
Undergraduate Conceptions of the Field of Computer
Science

Michael Hewner
Rose–Hulman Institute of Technology

5500 Wabash Avenue
Terre Haute, IN

hewner@rose–hulman.edu

ABSTRACT
Students come to CS from a variety of backgrounds and with
a variety of preconceptions. Some initially select CS with a
very vague idea of the field they are majoring in. In this
paper, I describe CS undergraduates’ view of the field of
Computer Science. The approach was qualitative and cog-
nitive: I studied what students think CS is and how students
reasoned about their courses and curriculum. Through the
use of grounded theory in 37 qualitative interviews with stu-
dents and student advisors, I extracted three different con-
ceptions about CS found in undergraduate CS majors using
Grounded Theory. Overall, students had reasonable views
of CS at a high level but lacked specifics. Students had dif-
ficulty describing subfields of CS or anticipating the content
of courses they selected.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education — Curriculum

General Terms
Design, Documentation, Experimentation, Management

Keywords
Curriculum, Concentrations, Multi–disciplinary

1. INTRODUCTION

“When I was younger, I called it programming,
’cause that’s what I thought it was. When I first
came to [college], my idea of what I might do was
along the lines of: I’d make video games . . . But
the actual term ‘Computer Science’, I had never
heard until I declared my major as Computer
Science, ’cause that was the closest thing to a
programming word. And since then, it’s only

This is the author’s version of the work. It is posted here by permission of the ACM
for your personal use. Not for redistribution.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

The definitive version is available at: http://dx.doi.org/10.1145/2493394.2493414

been the fact that this college calls it ’Computer
Science’ that makes me think of it. It seems like
kind of an awkward term, honestly.”

—Freshman, Georgia Tech

Students come to CS from a variety of backgrounds and
with a variety of preconceptions. Some (as in the quote
above) select CS with a very vague idea of the field they are
majoring in. Even if a student researches CS before they
select a major, however, it is certainly reasonable to expect
that their understanding of the field will develop as they
progress through the undergraduate curriculum.

Although students’ views of CS definitely develop, it is
easy to imagine that students with an incomplete view of
the field of CS might make poor educational decisions. For
example, do most students in sophomore–level architecture
courses understand why such a course is part of their cur-
riculum? If not, does that make it more difficult for them to
maintain motivation? If CS educators understand how stu-
dents think about CS and what they expect, it is possible to
design curriculum that can address students’ views of CS.

In this paper, I describe CS undergraduates’ view of the
field of Computer Science. My goal was to answer two re-
search questions:

1. What types of CS field conceptions exist in CS under-
graduate students?

2. Do problematic view of CS cause educational prob-
lems?

My approach was qualitative and cognitive: I studied what
students think CS is and how students reasoned about their
courses and curriculum. Based on 37 interviews with stu-
dents and student advisors, I extracted three main concep-
tions about CS found in undergraduate CS majors using
Grounded Theory. Although these views do not reflect all
viewpoints about CS, they do have implications for how ed-
ucators design courses and curricula.

2. RELATED WORK
From the related work, we draw two main points:

1. From previous work in student views of CS, we in-
fer that students entering the CS degree probably do
not have a detailed understanding on the field [8, 3,
12]. Previous work suggests that undergraduate views
of the field change over time, but specifics of what
changes are unclear [2, 9].



2. From previous work in science education, know that
students often have misconceptions about fields like
science and improving their view is difficult [13]. Get-
ting valid methods of student field–level ideas is also
challenging; qualitative elicitation often needs to pre-
cede more structured instruments like surveys [1, 10].

The following two sections review these points in detail.

2.1 Conceptions of CS
Although little is known about the conceptions of CS un-

dergraduates, there is a fair bit of research in pre–college stu-
dents’ interest in “computing careers”. Very broadly, many
students are interested in computing careers [7] but gener-
ally do not have concrete idea of what Computer Science
means. Greening [8] asked high school students to com-
plete the sentence “Computer Science is mostly about. . . ”:
the majority said they didn’t know or provided trivial an-
swers like “computers”. In a student of high school calculus
students, Carter [3] found that 80% of students left blank
the question “What is your impression of what Computer
Science Majors learn? (leave blank if you have no idea)”.
Presumably, students who choose to major in CS may know
more about the field than their peers but knowledge about
CS among high school students definitely seems fairly low.

For college undergraduates, McGuffee [12] describes stu-
dent responses to the question “What is Computer Science?”
He reports that at the beginning of CS1, student conceptions
are too broad, while at the beginning of CS2 students defi-
nitions are too narrowly focused on programming. Biggers
et al. [2] compares attitudes about CS in seniors: some of
whom left the CS major and some of whom stayed in the ma-
jor to completion. Seniors who stayed in the major empha-
sized the broadness of CS as opposed to just programming.
Similarly, Hewner and Guzdial [9] found that CS seniors es-
says about CS emphasized the breadth and excitement of
the field.

Overall, the existing research suggests that student views
of the field of CS are initially not very sophisticated [12,
8, 3]. Studies on CS seniors [2, 9] suggest that views do
change over the course of an undergraduate career and may
have an effect on student retention. But how views change
and what different kinds of views exist in undergraduate CS
majors past the first few courses is still an open question.

2.2 Studies of Field Conceptions
One area where field conceptions have been studied in

detail is science education. Science educators often want
students to learn “epistemology of science” — how research
is conducted, how scientific theories are made, etc. Most sci-
ence classes don’t focus on explicitly teaching epistemology
except in passing, but many educators believe that under-
standing the overall scientific endeavor is essential to student
understanding. In general, the results of student epistemol-
ogy of science research suggests that students have a variety
of different specific misconceptions about the field of science
and that attempts to educate students often have little effect
[13].

Eliciting student epistemologies of science is actually a
very similar problem to eliciting student conceptions of CS.
Similar to CS, eliciting conceptions is difficult because there
is no single expert viewpoint of science [13]. Most of the
early work focused on quantitative measures of science, but
criticism that researcher–designed quantitative instruments

were not truly measuring students’ viewpoints has motivated
more qualitative approaches [10]. Aikenhead and Ryan, for
example, argue that attempting to measure student epis-
temologies of science without initial qualitative elicitation
makes it impossible to determine what quantitative survey
results actually mean [1]. In their work designing an instru-
ment for assessing student epistemologies of science, they
found that semi–structured interviews provided the most
unambiguous measure of student views, but that doing in-
terviews was very time intensive.

Epistemology of science research suggest that students can
lean specifics about a field like science while still maintaining
significant misconceptions about the field as a whole. The
research also suggests that qualitative understanding of stu-
dent viewpoints needs to precede quantitative evaluation if
the results are to have validity.

3. METHOD
My study was an open–ended qualitative interview study

designed to understand what conceptions exist and how they
affect student educational decisions. The primary data for
this study came from interviews with undergraduate CS ma-
jors. I interviewed 33 students about their view of CS. The
interviews were between 45 and 60 minutes. Student inter-
views were supplemented with a written survey (see section
3.3) as well as interviews with four student advisors.

3.1 Sampling and Recruitment
Recruitment was done through presentations in CS classes.

Students were asked to volunteer and offered a gift certificate
to compensate them for participating. To select students to
interview, I used the grounded theory practice of theoretical
sampling [4]. In theoretical sampling, a researcher begins
with an initial population to interview and then selects fu-
ture candidates based on what would further help elaborate
the developing theory. This allows the researcher to discover
factors that seem to have an effect on interview responses
and pursue them. However, this method does not attempt
to make the sample statistically representative.

I selected students to interview in order to get a range
of academic success, gender, and ethnicity. Students were
recruited from CS programs at three different schools:

• Georgia Tech is a competitive engineering school with a
curriculum that allows a great degree of student choice
in CS courses.

• Duke University is a competitive liberal arts school
with a more proscribed CS curriculum but greater fo-
cus on multi–degree programs.

• Spelman College is a traditionally African–American
Woman’s college. Students interviewed usually had
not taken CS course prior to coming to Spelman.

Students were interviews at all stages of their undergradu-
ate careers, with particular focus on sophomores and juniors.

3.2 Interview Method
Initial interviews used fairly focused questions, including

questions like “how would you define CS”. As I gained prac-
tice it was clear that kind of questioning was not productive.
Students were very wary of defining the field. Students also
did not have knowledge about subfields of CS (e.g. architec-
ture, programming languages) – even at a very high level.



As a result, the interview process developed significantly
throughout the study (in accordance with a grounded the-
ory approach).

In later interviews, questions began with asking students
about their own experiences in the major. I asked students
to describe their courses and courses they were interested in
the future. Usually this would naturally segue into a dis-
cussion of CS as a whole and students felt more comfortable
asserting their options. I would also ask questions designed
to test the boudaries of student understanding of the field,
for example:

1. Whether they considered a particular course they men-
tioned was completely CS, or a mix of CS and some
other field

2. For an example of a “really Computer Sciencey” job

3. If they considered someone doing a particular job to
be “doing Computer Science”

4. For what they expected to learn in a particular (future)
CS course, or what they were intended to learn in a
previous or current CS course.

3.3 Checks to Ensure Validity
When attempting to understand student conceptions, there

is a risk of misinterpretation and bias. This is a common
problem in qualitative research; even when participants and
researchers act in good faith, it is difficult to understand
when backgrounds and assumptions are different. There are
a variety of techniques to mitigate this risk [11]. I used
two: triangulation from multiple data sources and member
checking.

For triangulation, I used a written survey instrument with
concrete questions about CS, handed to students after the in
person interview. In practice, this survey turned out to be
not very useful: as stated before, students tend to be very
wary of questions that ask them to define CS. As a result,
students’ written responses rarely conveyed much that could
be compared against their interviews.

With three students, I also used member checking: pro-
viding the student with my analysis of their conception,
and asking for feedback. In one case, I contacted the re-
search participant after the initial interview and reinter-
viewed them with the my interpretation of their viewpoint.
In two others, I presented my analysis after the regular in-
terview process concluded. The students agreed with my
analysis (even after careful probing to attempt to mitigate
power differential that makes agreement suspect [4]).

3.4 Grounded Theory Analysis
The theory of student conceptions presented here was de-

veloped based on A grounded theory is based off careful
line–by–line analysis of interview transcripts. My process
was based off the approach outlined by Charmaz [4]:

1. First the researcher develops initial codes that describe
what is being expressed in each line of the data.

2. Second, the researcher goes back through the body of
research accumulated and selects ‘focused’ codes that
explain larger segments of the data.

3. Third, the focused codes are abstracted into categories
in a tentative theory that is then checked against other
parts of the data to test its explanatory power. There
are several techniques to help the researcher attempt
to develop the categories in this larger theory including
axial coding [6], theoretical coding [4], and situational
maps [5].

For example, consider the quote below:

“The way I see computer science is using a com-
puter or — I guess not necessarily even a com-
puter, but using an algorithm . . . Really, if you
have an algorithm, you can just do it by hand or
build a machine . . . [Computers] aren’t necessar-
ily central to carrying out an algorithm.”

—Junior, Duke University

One of the things I coded about this quote was the stu-
dent’s explicit differentiation between computer science and
physical computers. The initial coding was abstracted into
the code “you don’t need a computer for CS” which brought
together several different examples of students explicitly dif-
ferentiating computer science (as the study of algorithms)
from programming/computers. This definitely was differ-
ent from several other students who explicitly explained CS
as the study of programming. Eventually, this code and
several others were abstracted into the superordinate cate-
gory of the “theory–view” conception of CS. I then looked
for examples of this code and insured that it occured in in-
terviews that had other characteristics of the theory–view,
testing that the overall category of theory–view made sense
and was consistent with all the interview data.

4. THREE CONCEPTIONS OF CS

4.1 Theory–View: CS as Mathematical Study
of Algorithms

“ . . . theory definitely is important - very, very
important to Computer Science in sort of under-
standing the more theoretical aspects like what
people are working on, like what are the con-
straints, where are the known problems, that sort
of thing . . . So computer science, I feel like is
much more actually theoretical and programming
is just another skill essentially.”

—Junior, Duke University

The theory–view of CS focuses on the theoretical and
mathematical aspects of CS as the most essential part of
CS. ‘Theory’ as students used the word encompassed more
than just the contents of a theory course: it includes the
abstract portion of most CS courses (e.g. data structures,
LL and LR grammars), but algorithms are frequently men-
tioned as the central idea. In this view, programming is
a useful offshoot of the mathematics of CS, but it’s clear
that it is an application and not the core. Students with
this conception would frequently emphasize that Computer
Science exists beyond actual physical computers: they were
the only group to mention that CS exists in puzzle games or
algorithms humans execute in everyday life.



For theory–view students, CS was an academic discipline.
All of them agreed it was possible to do programming with-
out doing Computer Science. Some suggested that probably
every professional programmer encountered hard problems
and therefore was doing CS, while for others the programmer
had to be working on a hard problem that required intricate
algorithms.

It’s important to note that this view of CS did not coincide
with an interest in doing theoretically–oriented CS work.
All of them agreed that theoretical CS was important to
know, but none of these students were interested in pursuing
theoretical CS as a career. Just like students with other
conceptions of CS, they expressed frustration that proofs
were difficult and not something they could see themselves
doing long–term.

4.2 Programming–View: CS as Programming–
Centric but Including Supporting Subfields

“I’d say that computer science is a study; is a
discipline, and that programming is how it takes
form; how it’s actually represented in the world.
So I’d say programming is probably the end goal
behind computer science, but - I mean, it’s like
comparing the study of automobiles to building
a car. Well, you can contribute to the study of
automobiles without ever actually building a car;
many people do. But yes, we study it so we can
build them.”

—Freshman, Georgia Tech

In programming–view, programming is central activity of
Computer Science but it is supplemented by several subfields
that do not directly involve programming. In this case, pro-
gramming encompasses topics like data structures and the
implementation of algorithms (for example, doing a project
in a graphics class). Students acknowledged that a computer
scientist must understand ideas like Big O, incomputablity,
the structure of a processor, etc. However, the central activ-
ity of Computer Science is definitely programming: that is,
someone proving something about an algorithm is doing a
less Computer Science oriented activity than implementing
that same algorithm.

Professonal programmers were seen as the exemplars of
Computer Science in programming–view; CS was not pri-
marily an academic discipline. Unlike the theory–view stu-
dents, programming–view students did not emphasize that
some programming is not CS. Students in this group valued
expertise with particular technologies and often were inter-
ested in problems that had concrete technical aspects (e.g.
an e–commerce solution with a database).

Programming–view students varied in how ‘supplemen-
tal’ the non–programming subfields of Computer Science
appeared to be. On one extreme, the non–programming
subfields of Computer Science are clearly fields in their own
right with practitioners (e.g. in the analogy quoted at the
beginning of the section, the “many people” who contribute
without building a car). At the other extreme, there was
definitely some content that Computer Scientists needed to
know beyond programming, but someone who worked ex-
clusively on the supplemental aspects was seen as on the
edge of the discipline (e.g. someone who works on proofs
about programs might be more of a mathematician than a
Computer Scientist).

Some students in this group exhibited potentially prob-
lematic conceptions about CS. They readily agreed that
non–programming aspects of their courses were useful to
them, but they often had difficulty articulating good reasons
why. Programming–view students argued that courses like
discrete math were supposed to teach good mental habits or
logical thinking skills. When asked about computer archi-
tecture courses, programming–view students could readily
say that understanding the hardware could promote efficient
programs, but had much greater difficulty thinking of an ex-
ample why. They also frequently incorrectly anticipated the
content of future courses.

4.3 Broad View: CS as Having Many Differ-
ent Subfields

“You can basically almost work anywhere. You
can work for these corporate business, Microsoft,
Google. You can work for the government, CIA,
FBI. You can work as a computer analysis; you
can work for the police department . . . You can
build programs for them. You could work in their
database and organize their files. You can ana-
lyze various things . . . ”

—Freshman, Spelman College

The third view of CS was as a very broad category that
was interdisciplinary and included many distinctive (and
equally important) subfields. Students with this viewpoint
almost universally emphasized that Computer Science was
much more than just programming and that a degree in
Computer Science had a wide variety of applications.

Broad–view students struggled to articulate a division be-
tween using Computer Science and simply using a com-
puter. They often gave examples of how programming could
be used in interesting ways. They also often wanted to
make clear that programming was not the only possible
thing Computer Science could provide but it was difficult
for them to come up with concrete examples. Occasionally
students would veer into potentially problematic conceptions
by strongly emphasizing fields in CS (like logic) that were
not part of their school’s curriculum. However, it is im-
portant to note that no one in this view subscribed to the
simple notion that everything that involves using computers
involves Computer Science.

Broad–view students included researchers, professional pro-
grammers, and others in their view of the field. “Researchers”
in this case were generally academics working on some spe-
cific application of Computer Science. CS Theory tended
to have a limited role and on occasion was ignored entirely.
Topics like data structures and algorithms were considered
important regardless of which area of CS one wished to pur-
sue. Broad–view students were also likely to mention ethics
and communication skills as things needed by all Computer
Science majors.

Broad–view students often had goals outside of a tradi-
tional computer programmer role. They often described ini-
tially viewing Computer Science as about programming, but
then discovering a wider view. Not all had negative experi-
ences with programming, but that was common.

On occasion, broad–view students incorrectly identified
the contents of future courses (e.g. saying that Operating
Systems was about Linux distributions). This was more pro-



nounced in areas they had less interest in, like operating sys-
tems and architecture courses. Even though they generally
brought up a greater variety of subfields of computer science
than other students (especially interdisciplinary ones), they
generally did not have detailed knowledge about them.

4.4 Students Attempting to Combine the Views

“In my view at least, they do a lot of research
in sort of — well, they spearhead a lot of those
really cutting edge fields like [muffled] comput-
ing or sort of a security encryption, algorithms
or like just algorithms in general maybe with dif-
ferent applications and things like that. But for
me like computer science, like they’re much more
sort of into the research aspects and pushing the
technologies on the theoretical fronts and sort of
the experimental stages.

Whereas I would call - I guess call myself a soft-
ware engineer where I use these technologies and
I like to learn about these systems, these new
technologies being developed and learn how I can
actually combine and build a system that can
support a service and application.”

—Junior, Duke University

Most of the students interviewed fit fairly unambiguously
into one viewpoint or another. There are a few that lie on
the border between one viewpoint and another. Here’s a
student who has reconciled The Theory View and the Pro-
gramming View by contrasting Computer Science (theory)
with a field of“software engineering”. Note that by the words
“software enginneering” the student appeared to be thinking
about programming – not the academic subfield of CS called
software engineering. Insofar as the term“computer science”
is being applied to the theory side, one might say this is a
theory—view but the view seems more nuanced than that.

When talking to juniors and seniors, one definitely gets
the view that students’ viewpoints about Computer Science
are still evolving. This was borne out in the interviews
with graduated students; they usually discussed their view
as continuing to change past their graduation. The three
viewpoints are attractive to students: they provide a single
coherent explanation and that makes students want to sub-
scribe to one or another. However even experts don’t agree
on a simple definition of Computer Science, so any simple
view is inevitably going to have some contradictions. As
students become more sophisticated, it is reasonable to ex-
pect them to combine views and allow for differing opinions
about CS. This process seems to be just starting for most
undergraduates; for most of the students in this study, a
single view provided a sufficient explanation of CS.

4.5 Potential Problems With the Three Main
Conceptions

One of the goals of this research was to identify potential
student issues with CS. If a student has expectations about
CS, and these expectations are in conflict with the curricu-
lum of their school, there is a potential for difficulties.

Based on interviews, students’ conceptions were accurate
at a high level. No students considered CS to be about
application use or as just IT work, for example. No students
felt that the content of CS was overall useless to them, and

that they needed to learn real skills independently. All the
main conceptions are at least reasonable views of CS.

But student views of CS also had some potential problems.
This section will highlight two:

1. Students knew few specifics about the contents of fu-
ture courses.

2. Students did not often understand the role of theory
in CS.

4.5.1 Lack of Specifics About Future Courses

“Like I was signing up for fall classes. Okay, do
I want to take processer design or operating sys-
tems class? And, to be honest, that stuff looks
very similar to me from my shoes, right. I don’t
know anything about either one, so how am I
supposed to distinguish them?

So is there anything I wish like I’d been told?
Well, yeah. I wish people would say like - I mean
it’s sort of impossible to tell you about it until
you’re actually in it and doing it . . . they don’t
sit you down and say, okay, look at this screen
of assembly code. That’s what you’re gonna do
if you go into platforms. Or look at this screen
of Python code. That’s what you’re gonna be
doing if you’re in artificial intelligence, right?”
—Junior, Georgia Tech

Almost anytime I asked students to speculate about the
content of a future course, students would explain they re-
ally did not know much about what the course entailed.
This was true of required courses, elective courses they were
looking forward to taking, or even courses they had signed
up for in the next semester. It might not be fair to call
this a potential problem because students had such a ex-
plicit assumption that entering a course with no concrete
expectations was normal. That does not always mean that
students could not speculate correctly. When I asked stu-
dents to speculate and predict the content of their future
courses, some of them could do it with fair degree of accu-
racy. The main point is that students weren’t familiar with
the specifics of their future courses and didn’t normally think
about them. This is consistent with vague nature of main
conceptions: students were not aware of the subfields cov-
ered in their later courses, and so those subfields did not
form part of their descriptions of the field of CS.

This particular issue challenged some of assumptions which
began this research. Initially, questioning focused on cata-
loging concrete potentially problematic conceptions in spe-
cific areas (e.g. architecture, compilers, etc.). When it be-
came clear that undergraduates do not reason about CS that
specifically, the focus of the interview process changed away
from detailed questions about particular areas.

4.5.2 Role of Theory
The place of theory in CS was definitely an area of student

contention. For some students, it was central part of Com-
puter Science, while for others it seemed almost a minor
detail for analyzing an algorithm’s speed and a few other
obscure details. Many students disagreed with particular
theoretical topics; they felt that theory was not useful to
them. I did not consider this a problematic point of view:



experts and educators frequently disagree about what theo-
retical topics are useful in a particular course. However, it
was also common for students to overemphasize the coding
aspect of CS, especially when the theory was a mathematical
idea they found difficult to learn:

“’Cause when I was working on the project I
didn’t have any idea what I was doing for the
calculus part until I took one of my friend to just
like tell me, ”These are the formulas you need
to do.” And then once I knew all the formulas I
could just code them - like it wasn’t a problem to
code them. It was just I didn’t know any of the
formulas ’cause I don’t really enjoy Calc 3 [for
CS Majors]. So I feel like it’s - like it should be
subdivided.

Like math majors should be able to know all that
stuff if they need to but CS majors - that’s not
their priority. We don’t need to know the cal-
culus part. Like we can, I guess, talk to other
people that are specialized in that. Like our spe-
cialty is creating code.”

—Sophomore, Georgia Tech

There were also students who’s conception of CS simply
did not include any aspect of theory or mathematical com-
ponents of CS, even when pressed:

“Programming I think is a lot of math, as well as
when you’re first starting off. When you’re learn-
ing binary, when you’re learning about memory
and RAM, and that type of thing. I think that is
definitely where the math comes in . . . If you’re
trying to calculate something. If you’re trying to
build a program that is going to give you the sine,
or cosine or a tangent, or the sine or cosign of
something anywhere, you would definitely have
to know what that is.”

—Senior, Spelman College

This definitely seems to be something that the student has
forgotten or not did not understand, not simply an argument
that theory was not useful. It’s clear from the curriculum
standards that these topics were part of the student’s cur-
riculum.

Students difficulty with recognizing theory as an aspect of
CS is interesting, because almost all students included the
idea of algorithms as some part of their definition of CS. It
definitely seems possible for students to view the idea of al-
gorithms as central in CS, while leaving out or questioning
the mathematical analysis of algorithms. For all students,
the idea of taking some problem and devising a new algo-
rithm to solve it was an important CS activity. But for many
students, devising a solution to an algorithmic problem was
simply a skill separate from formal mathematics.

4.6 Change of Conception
This section discusses how students believed their views of

CS had changed over time. Because this is based on student
reflection rather than longitudinal interviews, it’s important
to treat this data with caution. That said, student reflec-
tions on how their views changed provides insight into what
changes seemed significant to students in retrospect, even if
it is not a completely accurate view of the entire process of
conception change.

4.6.1 CS is Not Just Programming

“I mean, since I was little I just saw, when I think
of computer science I thought of my dad all the
time and all he did, he was a coder, a devel-
oper. So I just like imagine him when someone
says computer science. Oh dad, what does he
do? Code, that’s what he does . . . after com-
ing to college my idea of what computer science
actually changed . . . I think it changed pretty
quickly. Like joining the different organizations
I saw people always talking about different [spe-
cializations] they’re taking . . . ”

—Sophomore, Georgia Tech

Many students talked about how initially they viewed CS
as just programming but that view changed either in high
school or early in college. Many students had computers sci-
ence classes in high school that they described as basically
programming. Even before students had taken a high–school
CS class, they had somehow heard it was programming. Stu-
dents described expecting CS to be learning additional pro-
gramming constructs, or languages, or specific applications
(e.g. how to build webpages) when they initially enrolled
in CS. In addition to talking about non–programming sub-
jects or careers with CS, student also emphasized that this
programming–only view did not realize the importance of
algorithms which they later came to appreciate. Many stu-
dents remarked that CS seemed more interesting after it
became clear it was not just programming (even students
who enjoyed programming).

Students often contrasted their current views with think-
ing of CS an earlier view of CS as “just programming”, but
only one student actually asserted that CS was just pro-
gramming in the interview. This change seemed to begin
quite early in the curriculum — just about the time stu-
dents were introduced to data structures. Some views that
I classified as programming–view often were very close to
just–programming in that students could not think of ex-
amples of CS activities outside of programming. Students
have heard that CS is not just programming, but it seems
like their view of the non–programming aspects of CS evolve
over time.

4.7 CS Deeper Than Expected

“I guess [the intro course is] a really easy class
. . . And I was like, ‘Oh, I get this programming
stuff.’ And I got to [data structures] , and I was
like, ‘Whoa, I don’t get this.’ And so that was
- I realized then that it was a little more com-
plex. And I got it at the end of the class, but I
was kind of more apprehensive about taking any
more classes after that. And then after that I
took [architecture] then I was even more appre-
hensive.”

—Senior, Georgia Tech

Similar to discovering that CS was not just programming,
many students remarked that a lot more went into CS than
initially anticipated. This viewpoint change also occurred
early in the curriculum — anywhere from the first intro
course to computer architecture. This was seen a less pos-
itive change by students: students were often attracted to



CS because it seemed easy and they performed better than
their peers. Students experiencing this change often began
to wonder if they had the made the right decision to major
in CS.

The exact topic matter that was deeper than expected
varied. Some students talked about designing code as being
more challenging than they anticipated. Others were sur-
prised about learning details of hardware. In all cases, it
seems that the students conceptually found the new mate-
rial interesting, but it was also more challenging than they
first imagined.

4.8 Learning About Subfields of CS

“Like before when I thought of robotics, it was
kind of like two different classifications. You had
either the robotics like industrial robots, which
was just an arm doing some kind of task, mov-
ing something, or you had a humanoid robot,
. . . [Through class] I saw that there are very broad
fields of robots . . . there’s robots that hop on one
leg, robots that hop on two legs. We saw robots
shaped like snakes that wiggle around and can
climb up poles . . . Just things like that I was like
I had no idea we were even trying to do that
much less that you could.”

—Junior, Georgia Tech

This last change of conception was in many ways the most
interesting because it seemed to represent an elaboration of
the main conceptions identified above. Among all the three
main types of conceptions, students generally had a very
vague understanding with regard to particular subfields of
CS. Students from a broad viewpoint might mention that
you could build robots in Computer Science but (maybe be-
yond one example) they could not elaborate on robotics or
any area in particular. But, for a few students, a recent
change occurred that encouraged them to deeply look into
an area of CS. As a result of this research, they had sig-
nificantly greater detailed knowledge which significantly ex-
panded their idea of what was possible in Computer Science.
In most the cases I interviewed, these students were seniors
who had just started looking into this new subfield. They
did not have details on the connections between their field
and other areas of CS. This suggests that there are poten-
tially more elaborated viewpoints of CS for some students
after graduation.

5. DISCUSSION

5.1 Commonalities Between The Three Main
Viewpoints

Although the three viewpoints are different, there are a
few key ideas that are common to all conceptions. These
ideas are worth highlighting because they are things an ed-
ucator can probably assume most of his students agree with
(at least in courses for sophomores or later):

1. Programming is an important skill. Students of all
groups expected to do programming in their courses.
Even when they personally did not enjoy it, or when
they did not feel it was the“core”of Computer Science,
they still considered it a major part of a CS education.

2. Programming is not all of CS. Even programming–
view students acknowledged the importance of other
skills. Although students sometimes misidentified the
purpose of learning specific non–programming skills,
all seemed convinced that other topics could be useful
to them. This is not to say students agreed with ev-
erything they were taught: students complained about
useless content in certain courses.

3. Algorithms are essential to CS. Students in every cat-
egory mentioned the ideas of algorithms as essential to
CS. For all groups, the idea of someone sitting down
and coming up with an algorithm to solve a challeng-
ing problem was maybe the “most” CS–like activity
possible.

4. No detailed knowledge of subfields of CS. Undergradu-
ates tended to reason about CS in fairly broad strokes.
Parts of CS that corresponded well with the students’
outside knowledge might get mentioned (e.g. network-
ing, databases, and robotics for example) but other
less obvious areas would tend to get lumped together.
For example, students would talk about the“low–level”
parts of CS which seemed to contain (approximately)
architecture, operating systems, and compliers (and
sometimes building hardware). Even when students
were pursuing a particular field in CS, they were just
beginning to do research and did not yet understand
the different subfields of a larger area like graphics.

5.2 Dealing with Vague Student Expectations
for Classes

Students exhibited an accurate but high level view of
Computer Science. They generally took an exploratory at-
titude toward class, and did not know specifics about the
goals of the classes they selected. They usually did not have
specific long–term educational goals about CS.

From an instructor’s perspective, this confirms the initu-
tion that instructors must motivate the content they present.
It seems logical to think that any student who registers for
a particular elective must have some purpose in mind, but
based on my interviews students generally take classes with-
out any concrete goals for the class. Instead, students ex-
plore courses to see if they find the topic interesting.

The three perspectives provide evidence that student ex-
pectations for CS are diverse. The good news is that the
is little evidence for students with very problematic concep-
tions of CS (e.g. CS as application use, CS as learning a
particular language, etc.). Students of all conceptions ex-
pect CS classes to have some non–programming and some
programming topics. However for courses that emphasize a
particular aspect of CS (e.g. theory courses, HCI courses), it
may be a good idea to very clearly set expectations upfront.
For example, students with a programming–view might like
to know that a HCI course will focus entirely on eliciting
user stories and doing mockups; programming–view stu-
dents might not expect that in a course.

Because students don’t expect specific content from their
courses, student critiques that course content is ‘useless’ may
be more about frustration than the usefulness of the content.
Students would criticize the content of their courses when
they had a bad learning experience. Similarly, instructors
occasionally complain that students have negative precon-
ceptions about their course content. Students probably do



not have good reasons to complain about the content of their
course, but neither are instructors right that students have
negative preconceptions.

5.3 Are Student Conceptions of CS a Prob-
lem?

I began this research based on the concern that inaccurate
student conceptions of the field of CS would cause educa-
tional problems. The literature suggests that students do
not have a detailed conception of CS when they begin the
major [12]. Given this, it seemed reasonable to ask if stu-
dents knew enough about CS to make good decisions about
persisting/leaving the major or choosing specific courses or
specializations.

Based on this research, student conceptions of the field
are in some ways better and in some ways worse than antic-
ipated. None of the students interviewed had very problem-
atic conceptions of CS (e.g. CS is IT work). Most students,
however, had a very high level view of CS and that did
not include details of sub–fields of CS or concrete plans. In
particular, students did not generally have concrete expec-
tations for the content of their courses. For courses students
had already taken, students did not often understand why
specific content was included in the curriculum.

However, given the difficulty of teaching field based con-
ceptions [13] student conceptions of the field of CS do not
seem to be a major problem. Although students (like ex-
perts) have diverse views about the field of CS, they know
enough to make reasonable educational decisions.

6. CONCLUSION
The main contribution of this work was to develop a the-

ory of student conceptions of the field of CS. Students had
three main views:

1. Theory–View: CS as Mathematical Study of Algorithms.
Students who held this view thought of CS as a primar-
ily theoretical and mathematical discipline. The de-
sign of conceptually difficult algorithms was most cen-
tral to CS, as were other mathematical ideas like Big
O and NP–Completeness. Programming was viewed as
useful but peripheral to CS, and students emphasized
that CS could exist without any physical computer.

2. Programming–View: CS as Programming–Centric but
Including Supporting Subfields. Students who held this
view considered CS to be mainly about programming,
but emphasized that other subfields were also neces-
sary to do good programming. Writing programs to
solve large and technically challenging problems was
the central activity. Students with this view varied on
the importance of non–programming subfields.

3. Broad–View: CS as Having Many Different Subfields.
Students who held this view thought of CS as mix
of many different computer–related subfields. Theory,
Robotics, Programming, and (often many) others are
all equally important parts of a broad CS ‘umbrella’.
In this view, comparatively little knowledge was con-
sidered ‘essential’ to a Computer Scientist; students
emphasized the differences between subfields and the
freedom to pursue different paths.

All three of these viewpoints were a high–level view of CS.
Students did not know many details about subdisciplines of
CS or the content of future courses.

Overall, student views of the field of CS are not as prob-
lematical as educators may fear. Students expect to learn
both theoretical concepts and programming in their courses.
Students do lack details on the specifics of their courses, and
that is something that educators need to keep in mind as
they design their materials. As long as educators motivate
their content carefully and understand that there is a diver-
sity of student opinion about the “true” nature of the field,
it should be possible to design courses that are meaningful
to students with every kind of CS conception.

7. ACKNOWLEDGMENTS
This research supported in part by a grant from the Na-

tional Science Foundation BPC Program #0634629.

8. REFERENCES
[1] G. S. Aikenhead and A. G. Ryan. The development of

a new instrument: “views on
science–technology–society” (vosts). Science
Education, 76(5):477–491, 1992.

[2] M. Biggers, A. Brauer, and T. Yilmaz. Student
perceptions of computer science. In Proceedings of
SIGCSE 2008, pages 402–406, Portland, OR, USA,
2008. ACM.

[3] L. Carter. Why students with an apparent aptitude
for computer science don’t choose to major in
computer science. In Proceedings of SIGCSE 2006,
pages 27–31, Houston, Texas, USA, 2006. ACM.

[4] K. Charmaz. Constructing Grounded Theory. Sage
Publications Ltd, 1 edition, Jan. 2006.

[5] A. Clarke. Situational Analysis: Grounded Theory
After the Postmodern Turn. Sage Publications,
Thousand Oaks, Calif, 2005.

[6] J. Corbin and A. C. Strauss. Basics of Qualitative
Research. Sage Publications, Inc, 3rd edition, 2008.

[7] W. E. Foundation and ACM. New image for
computing: Report on market research.
http://www.acm.org/membership/NIC.pdf, 2009.

[8] T. Greening. Computer science: through the eyes of
potential students. In Proceedings of the 3rd
Australasian conference on Computer science
education, pages 145–154, The University of
Queensland, Australia, 1998. ACM.

[9] M. Hewner and M. Guzdial. Attitudes about
computing in postsecondary graduates. In Proceeding
of ICER 2008, pages 71–78, Sydney, Australia, 2008.
ACM.

[10] N. G. Lederman. Students’ and teacher’s conceptions
of the nature of science: A review of the research.
Journal of Research in Science Teaching,
29(4):331–359, 1992.

[11] Y. S. Lincoln and E. G. Guba. Naturalistic inquiry.
SAGE, 1985.

[12] J. W. McGuffee. Defining computer science. SIGCSE
Bull., 32(2):74–76, 2000.

[13] W. A. Sandoval. Understanding students’ practical
epistemologies and their influence on learning through
inquiry. Science Education, 89(4):634–656, 2005.


