
STUDENT CONCEPTIONS ABOUT THE FIELD OF
COMPUTER SCIENCE

A Dissertation
Presented to

The Academic Faculty

by

Michael Hewner

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Human–Centered Computing

School of Interactive Computing
Georgia Institute of Technology

December 2012

STUDENT CONCEPTIONS ABOUT THE FIELD OF
COMPUTER SCIENCE

Approved by:

Dr. Mark Guzdial, Advisor
School of Interactive Computing
Georgia Institute of Technology

Dr. Ellen Zegura
School of Computer Science
Georgia Institute of Technology

Dr. Amy Bruckman
School of Interactive Computing
Georgia Institute of Technology

Dr. Yasmin Kafai
School of Graduate Education
University of Pennsylvania

Dr. Keith Edwards
School of Interactive Computing
Georgia Institute of Technology

Date Approved: November 5, 2012

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . x

I INTRODUCTION . 1

1.1 Conceptions of CS and Educational Decisions 3

1.2 Why Study Conceptions of CS? . 6

1.2.1 Conceptions are Persistent 6

1.2.2 Conceptions Have Educational Implications 7

1.2.3 Conceptions Vary Between Fields 9

1.2.4 Summary . 10

1.3 My Previous Work . 10

1.4 Studying CS Conceptions . 11

1.4.1 Thesis Statement . 11

1.4.2 Study 1: Design . 12

1.4.3 Study 1: Results . 13

1.4.4 Study 2: Survey of Students in a CS Class 15

1.4.5 Study 2: Results . 15

1.5 Summary . 16

II PREVIOUS WORK . 17

2.1 Student Conceptions . 18

2.1.1 Epistemology of Science . 18

2.1.2 Alternative Conceptions . 22

2.1.3 Relationship Between Field Conceptions and Learning Content 26

2.1.4 Summary . 28

2.2 Differing Expert Definitions of a Field 29

2.2.1 Differing Expert Definitions of Science 29

iii

2.2.2 Differing Expert Definitions of Computer Science 30

2.3 Studies of Enjoyment and Decision Making 32

2.3.1 Enjoyment . 32

2.3.2 Eccles’s Model of Achievement–Related Choices 33

2.4 Studies of Student Field Conceptions 35

2.4.1 Studies of College Student Field Conceptions Outside of CS 35

2.4.2 Studies of Student Field Conceptions of CS 39

2.4.3 Attitudes About Computing in Postsecondary Graduates . . 42

2.4.4 Summary . 44

2.5 Conceptions of CS in High School Students 44

2.6 Summary . 49

III STUDY DESIGN . 53

3.1 Study 1: Method . 54

3.1.1 Data Sources . 54

3.1.2 Interview Method . 59

3.1.3 Summary . 62

3.2 Study 1: Study Design and Analysis 62

3.2.1 Grounded Theory in Study Design 63

3.2.2 Analysis . 66

3.2.3 Differences From Proposal 73

3.3 Study 2: Assessing Prevalence of CS Conceptions 74

3.3.1 Design of the Survey Instrument 74

3.3.2 Thinkaloud . 75

3.3.3 Participants . 77

3.3.4 Analysis . 77

3.3.5 Differences From Proposal 77

3.4 Summary . 78

iv

IV CS FIELD CONCEPTIONS IN CS UNDERGRADUATE STUDENTS . 80

4.1 A Theory: Three Main Conceptions of the Field of CS 82

4.1.1 Theory–View: CS as Mathematical Study of Algorithms . . 82

4.1.2 Programming–View: CS as Programming–Centric but In-
cluding Supporting Subfields 83

4.1.3 Broad View: CS as Having Many Different Subfields 85

4.1.4 Commonalities Between The Three Main Viewpoints 87

4.1.5 Discrepancies Between the Three Main Viewpoints 88

4.1.6 Students Attempting to Combine the Views 89

4.2 Potential Problems With the Three Main Conceptions 91

4.2.1 Lack of Specifics About Future Courses 91

4.2.2 Role of Theory . 93

4.2.3 Languages Rather than Concepts 95

4.2.4 Misinterpreted Names . 96

4.2.5 Summary . 97

4.3 Change of Conception . 99

4.3.1 CS is Not Just Programming 99

4.3.2 CS is Not Application Use 100

4.3.3 CS Deeper Than Expected 101

4.3.4 Learning About Subfields of CS 102

4.3.5 Summary . 103

4.4 Effect of Curriculum on Student Conceptions 103

4.5 Summary . 106

V STUDENT EDUCATIONAL DECISIONS 110

5.1 A Theory of CS Student Educational Decisions 111

5.1.1 No Concrete Educational Goals 113

5.1.2 Abdicating Responsibility to the Curriculum 116

5.1.3 Making Educational Decisions Based on Enjoyment 120

5.1.4 Making Educational Decisions Based on Long–Term Goals . 127

v

5.1.5 Peers, Parents, Advisors, and Professors 128

5.2 Implications of the Theory . 130

5.2.1 Relationship with Existing Theories 131

5.2.2 Students Rarely Have Preconceptions But Can Lose Interest 135

5.2.3 Detailed Conceptions of CS Don’t Help Make Educational
Decisions . 137

5.2.4 Summary . 138

5.3 Some Educational Problems . 139

5.3.1 Realizing It Was Useful Later 139

5.3.2 On the Edge of Computer Science 140

5.4 Summary . 141

5.4.1 Do potentially problematic CS conceptions affect student ed-
ucational decisions? . 144

VI PREVALENCE OF CONCEPTIONS AMONG CS UNDERGRADUATES145

6.1 Results from Study 2 . 147

6.2 Influence on Conception Selection 148

6.2.1 Underrepresented Groups 149

6.2.2 Computer Architecture . 151

6.3 Programmatically Determining Student Conceptions 151

6.3.1 Evaluating Programming–View 152

6.3.2 Evaluating Theory–View . 152

6.3.3 Evaluating Broad–View . 152

6.3.4 Uncategorized . 154

6.3.5 Classification Accuracy . 154

6.4 Summary . 155

VII CONCLUSION . 157

7.1 Summary of Research Findings . 157

7.2 Contributions . 159

7.3 Educational Implications . 160

vi

7.3.1 Dealing with Vague Student Expectations for Classes 160

7.3.2 Student Enjoyment . 161

7.3.3 Design of Curriculum to Accommodate Lack of Student Goals 163

7.3.4 Summary . 163

7.4 Future Work . 164

7.4.1 Future Work on Enjoyment and Educational Decisions . . . 164

7.4.2 Future Work on Student Conceptions of CS 166

7.5 Summary . 168

APPENDIX A STUDY 1 MATERIALS 170

APPENDIX B STUDY 2 MATERIALS 179

APPENDIX C LETTER TO GEORGIA TECH 183

REFERENCES . 185

vii

LIST OF TABLES

1 Summary of research questions and studies 12

2 Summary of interviews . 57

3 Results of Study 2 . 146

4 Chi–squared tests of the independence of various categories vs. con-
ception . 148

5 Frequencies of conception divided by underrepresented group member-
ship . 150

6 Frequencies of conception divided by gender and ethic group. 150

7 Frequencies of conception divided by students who took an introduc-
tory computer architecture course . 151

8 Instrument questions matched to conception 153

9 Classification problems with the programmatic classifier 154

viii

LIST OF FIGURES

1 Pre and post concept maps about Computer Science 47

2 A sample situational map . 70

3 Main page of the survey for Study 2 76

ix

SUMMARY

Computer Science is a complex field, and even experts do not always agree

how the field should be defined. Though a moderate amount is known about how

precollege students think about the field of CS, less is known about how CS majors

conceptions of the field develop during the undergraduate curriculum. Given the

difficulty of understanding CS, how do students make educational decisions like what

electives or specializations to pursue?

This work presents a theory of student conceptions of CS, based on 37 interviews

with students and student advisers and analyzed with a grounded theory approach.

Students tend to have one of three main views about CS: CS as an academic discipline

focused on the mathematical study of algorithms, CS as mostly about programming

but also incorporating supporting subfields, and CS as a broad discipline with many

different (programming and non-programming) subfields. I have also developed and

piloted a survey instrument to determine how prevalent each kind of conception in

the undergraduate population.

I also present a theory of student educational decisions in CS. Students do not

usually have specific educational goals in CS and instead take an exploratory approach

to their classes. Particularly enjoyable or unenjoyable classes cause them to narrow

their educational focus. As a result, students do not reason very deeply about the

CS content of their classes when they make educational decisions.

This work makes three main contributions: the theory of student conceptions, the

theory of student educational decisions, and the preliminary survey instrument for

evaluating student conceptions. This work has applications in CS curriculum design

as well as for future research in the CS education community.

x

CHAPTER I

INTRODUCTION

“When I was younger, I called it programming, ’cause that’s what I

thought it was. When I first came to Tech, my idea of what I might

do was along the lines of: I’d make video games . . . But the actual term

‘Computer Science’, I had never heard until I declared my major as Com-

puter Science, ’cause that was the closest thing to a programming word.

And since then, it’s only been the fact that this college calls it ’Computer

Science’ that makes me think of it. It seems like kind of an awkward term,

honestly. And I think it’s the right term; it’s just — it just sounds weird

for some reason.”

—Quote from student interview (P27)

Students come to CS from a variety of backgrounds and with a variety of precon-

ceptions. Some (as in the quote above) select CS with a very vague idea of the field

they are majoring in. Even if a student researches CS before they select a major,

however, it is certainly reasonable to expect that their understanding of the field will

develop as they progress through the undergraduate curriculum.

Most CS educators have experience with students who come to CS with miscon-

ceptions about what the field of Computer Science is. Some examples that educators

frequently mention anecdotally are:

• Students may come to CS expecting to learn “advanced features” of existing

application software.

• Students may come to CS expecting to learn how to do IT work like assembling

1

computers from parts and configuring routers.

• Students may come to CS thinking just about programming and not understand

why learning theory or architecture is valuable.

In departmental materials, textbooks, conversations with students, and occasionally

in class, we attempt to educate students about what CS really is. Educators hope

that students in time come to an accurate view of what the field of Computer Science

is, but understanding the field of CS is usually not a curricular goal or something we

assess. Most importantly, the computer science education community does not know

much about how this understanding of the field of Computer Science changes over

time.

Of course, not all views of Computer Science that differ from experts are the result

of confusion. Students may understand the “expert” point of view and feel that view

is wrong:

• Students may feel the credential of a CS degree is important, but feel that the

actual material covered is not useful to them in the “real world”.

• Students may feel that understanding CS is important, but only as part of a

larger different goal that is not purely CS (e.g. manager, computational artist).

• Students may have a position in the ongoing debates on what CS “ought to be”.

They could feel that CS needs to be more human–centered, interdisciplinary, or

theoretical, etc.

Some educators might wish to encourage at least some of these viewpoints; certainly

there is value in a spirited debate about the direction of CS going forward. Regardless,

similar to basic confusion, students who have different conceptions of CS may want

different things from their CS classes.

2

When educators design their classes, obviously they take into account the fact

that student goals and expectations may be different. But because little is known

about how CS students conceive of the field, educators must rely on their intuition

and ad–hoc conversations with students. By knowing how students view the field of

CS and how they make educational decisions, CS educators and curriculum designers

can better teach to the variety of student perspectives that exist.

In this document, I describe my research into student conceptions of the field of

Computer Science. My approach was cognitive: I studied what students think CS is

and how students made decisions about their courses and curriculum. Based on 37

qualitative interviews with students and student advisors, I extracted and described

three main conceptions about CS found in undergraduate CS majors. Based on these

viewpoints, I developed a preliminary survey instrument that I used to estimate the

prevalence of these conceptions in a class of CS students.

In this chapter, I present an overview of my approach, the arguments that un-

derstanding conceptions of CS is important, and a brief summary of my two studies

and their results. In chapter 2, I provide discussion of related work in the general

areas of science education and the computer science education community in partic-

ular. In chapter 3, I provide detailed information about the design of my studies

and my qualitative analysis process. In chapters 4-6, I present the detailed results of

those studies. Chapter 7 presents the educational implications of my work and some

thoughts for future research.

1.1 Conceptions of CS and Educational Decisions

There are many ways we could examine student perspectives on CS. Other research

has considered a variety of factors: if students think CS is fun or a good match for

them [41], if students are unduly affected by stereotypes [45], if the culture of CS

is welcoming to new participants [57, 64], and many other aspects. I focus on the

3

cognitive aspect of CS major’s perspective of the discipline; I am interested in what

majors think CS is and what they expect to learn by studying CS.

Much of my approach comes from the large literature of alternative conceptions

in science [79]. In science education literature, an ‘alternative conception’ is sim-

ply an existing student understanding of science concepts that usually differs from

the ‘expert–like’ understanding of their teachers. Alternative conceptions are usually

about science content, not conceptions of science fields (e.g. alternative conception re-

searchers generally study if students understand evolution, not if students understand

what biologists do). Nonetheless, the alternative conception literature has established

a variety of robust findings about students learning difficult concepts that have been

applied to many areas of education and many groups of students.

My work also draws on the literature on student epistemologies of science. This

is an area of science research that explores how students think about the process of

scientific discovery and argumentation. One thing that differentiates epistemology of

science research from scientific alternative conceptions is that there is no single correct

view of the scientific process [68]. Similarly, experts in CS have different views of the

field [52] so it is reasonable to think students might have different but valid views

as well. From an educational perspective, establishing a single universal definition of

CS is not important. Students simply need a clear enough understanding of CS to

choose good classes, attend to the right material in class, and make other ordinary

educational decisions. Therefore, my definition of CS conceptions focuses on student

understanding of the curriculum and educational choices.

I define a student’s conception of CS to be what skills and concepts a student

expects to learn in their CS curriculum and how they expect to use those skills and

concepts after graduation. This includes an understanding of the reasons behind the

curriculum: why particular concepts are covered and others are left out. Although

there is expert disagreement about a formal definition of CS [52], the curriculum itself

4

is fairly standardized [70]. Even if not all CS experts agree with the curriculum, it

is reasonable to expect that students who do not understand the CS curriculum may

make poor educational decisions.

I define an educational decision as any choice a student makes about their own

education. For example, selecting a particular major or choosing a particular elective

course are both educational decisions. Educational decisions can also be as small as

identifying the material likely to be on a particular test. This research focuses on how

students make educational decisions and especially how reasoning about conceptions

enters into this process.

This research also classifies student conceptions into two categories: productive

conceptions and potentially problematic conceptions. Productive conceptions are those

that show a good overall understanding of how the parts of CS fit into a coherent

whole and have a logical vision for how those concepts and skills will help after

graduation. A student may have a productive conception even if they are not certain

how some specific concepts (e.g. finite automata) fit into the overall picture. Overall,

a productive conception is one that lets a student reason about CS and make informed

educational decisions.

Potentially problematic conceptions are conceptions that in some way significantly

deviate from the curriculum. A potentially problematic conception might be an out-

right misconception about CS (e.g. CS is training in using advanced features of

applications). A potentially problematic conception could also be simply overfocus-

ing on some real aspect of CS (e.g. CS is programming). Of course, it is possible that

a student with a potentially problematic conception of CS may never have a problem;

the conception may be corrected before the student makes any significant educational

decisions. A potentially problematic conception is simply a conception that has the

potential to cause poor educational decisions.

Research on precollege students CS suggests that, at least initially, many students

5

may have potentially problematic conceptions. Similar to science concepts, we have

evidence that few high–school students in the general population understand much

about CS. Carter [9] reports that of students in a high school calculus and precalcu-

lus class, 80% of students reported that they did not know what Computer Science

is. Qualitative research suggests similar results for a variety of age groups [56, 81].

However, previous work with college students near graduation suggests that at least

near the end of their careers, student views of CS differ significantly from incoming

students [43, 6, 59].

1.2 Why Study Conceptions of CS?

My own previous research and the literature CS education provides some evidence

that many students come to CS with potentially problematic conceptions. What is not

clear is if these potentially problematic conceptions actually cause poor educational

decisions or have implications for CS educators. I argue that conceptions are likely

to persist longer than we expect, that have implications for CS education, and that

the types of potentially problematic conceptions are likely to be different in CS than

they are in other fields.

1.2.1 Conceptions are Persistent

Taking a page from the large literature of science alternative conception research, we

should be skeptical about assuming that students quickly overcome their initial poten-

tially problematic conceptions about Computer Science. One of the most commonly

observed aspects of alternative conceptions in the science literature is that teachers

habitually underestimate how difficult it will be to change student conceptions [79].

Often, even after alternative conceptions are explicitly discredited in class, students

will either misinterpret this new information as supporting the conception they still

have or adopt parallel concepts: one for answering teacher questions, and one for

reasoning in everyday life [38].

6

Even if students do change their conceptions after participating in CS classes,

there is no reason to assume that the new concept of Computer Science is more

expert–like than the old. Stevens [75] discusses how students in engineering often

view “what makes a good engineer” in the light of their current coursework. In the

beginning, student viewpoints in engineering are dominated by the view of an engineer

as someone who works on highly constrained mathematical problems with known

answers. When the coursework finally begins to be more open-ended and deal with

real world problems, students confident in the “math problem” approach now have

significant stress. There is evidence to suggest that this tendency to narrowly define

the field by introductory coursework occurs in CS too. McGuffee [59] reports that

while initially students’ definitions of CS are too broad, after one CS class students

narrowly define CS as just programming.

My research was not longitudinal, so it is difficult to know with certainty if stu-

dent conceptions persist. However, it was clear interviewing students that their views

of CS often incorporated incomplete aspects of topics they had heard from class.

This is what might be expected as new concepts of the CS field clash with exist-

ing student ideas. For example, many students definitely mentioned that CS was

not simply programming (and that this was something they had heard from instruc-

tors). However, when I asked students for some examples of CS topics that were not

programming–related, they often had great difficulty. Although students obviously

had heard something about what CS was, they had not yet reconciled that with the

programming–oriented classes they were taking. Changing student conceptions of CS

does seem to be challenging.

1.2.2 Conceptions Have Educational Implications

Even if students have expert–like views of CS, there are still several conflicting opin-

ions about what CS is. If some students expect a mathematical theoretical approach

7

to CS and other students expect focus on the mechanics of programming, building a

class that appeals to both is difficult. By understanding what conceptions students

are likely to have, instructors are better able to address student expectations.

Beyond the issue of individual classes, understanding how students make educa-

tional decisions has curricular implications. In my interviews, I found students often

relied heavily on the curriculum to ensure that they would learn any essential CS con-

tent. That puts different constrains on curriculums than students who have strong

opinions about CS and want greater freedom to specialize. Knowing to what extent

students use conceptions of CS in educational decisions suggests how important it is

develop a accurate view of the CS field early on.

Finally, there is a possibility that more accurate conceptions of CS make it easier

to learn CS content. Obviously, a accurate view of the field of CS is not required

to learn specific CS content. Even if a student thinks Computer Science is simply

training in how to use applications, they can still learn CS content like variables

and loops. But we know from general psychology research that what information an

observer is looking for greatly affects what they notice [34]. Similar to research with

experts and novices [16], understanding what features of information are important is

an large part of the skills that differentiate experts and novices. If a student expects

to learn about using applications, it is reasonable to suspect they might focus on

how to use the IDE more than they focus on how to construct good algorithms. My

research did not focus on establishing a connection between conceptions of CS and

academic success in CS (though I address the possibilities in more detail in Chapter

2). However, the relationship between conceptions and content leaning is still an

interesting avenue for future work.

8

1.2.3 Conceptions Vary Between Fields

Every field probably has issues with majors not initially understanding the field. But

although the fact that students have potentially problematic conceptions is similar,

the ways in which each field develops student understanding is deeply involved with

the individual concepts of the field. Because educational practices differ between

fields, it is reasonable to expect that student’s conceptions change in different ways.

Studies in various disciplines definitely provide evidence that student development

is different across disciplines. In Nespor’s studies [60], physics students and manage-

ment students experienced very different trajectories as they advanced in their majors,

and these are different than the stages of development in engineering disciplines that

Stevens notes [75]. Each of these disciplines has to deal with some similar challenges:

students in each field feel that the actual professional practice of the discipline is dis-

tinct from the problems of classroom. In engineering, Stevens [75] notes that, as the

curriculum progressed, professors moved more in line with “real-world” problems and

constraints, as well as increasing training in laboratory skills. This caused significant

stress as students dealt with having to apply more varied skills to less constrained

problems. In Nespor’s physics students, by contrast, the essential problems remained

similar but became more abstract: students might work a problem they had worked

in previous semester but this time from more basic principles. Because physics is

not a design-oriented discipline, physics students focused exclusively on the difficulty

of theory and problem solving, and not vague requirements or managing large scale

group projects.

There is also reason to think that Computer Science is a particularly interesting

field to study conceptions. CS is a new field and even among experts there are a

variety of opinions about what is and is not CS [52]. Probably even within indi-

vidual departments, many potential viewpoints on what CS is are represented. In

research in CS conceptions, it is especially important to keep in mind that while

9

some student may have conceptions of CS that hurt them academically (and this is

problematic), there are many potential conceptions of CS that may be different but

perfectly productive for our purposes.

1.2.4 Summary

In the previous section I reviewed several arguments about why learning student con-

ceptions in important. From other research into alternative conceptions, we find evi-

dence that alternative conceptions are resistant to education and persist longer than

instructors suspect. From general research in psychology and studies of other educa-

tional settings, we find evidence that student conceptions are likely to affect learning

and behavior. From educational research, we find evidence that although conceptions

exist in every field, they manifest in different ways and therefore it worthwhile to look

at CS specifically.

1.3 My Previous Work

This document focuses on two main studies specifically designed to elicit conceptions

of the field of CS in undergraduate students. However, this is not the first time I have

looked at student views of the field. Two studies served as inspiration for the work

presented here.

The first study was designed to identify whether student’s college experiences, in-

cluding interest–targeted introductory CS courses, had an affect on student attitudes

about computing four years later. This project compared essays from college seniors

in different majors about computing. The difference between CS majors and non–CS

majors in these essays were striking: although both groups enjoyed computers the CS

majors emphasized the breadth and surprising nature of computing while non–majors

focused mainly on enjoying technology. This suggested that the CS undergraduate

experience really does seem to change student conceptions.

10

The second study was explicitly designed to elicit conceptions of CS, but in pre–

college students. I interviewed high school students who had had some non–traditional

CS instruction. Students in this group often had potentially problematic view of CS,

especially that CS was application use. Even after explicit instruction in the field of

CS, student potentially problematic conceptions persisted. This work is what origi-

nally made me consider whether student conceptions of CS might cause educational

problems at the college level.

Both these studies suggested that student conceptions of CS were likely to be

complex. Both of them also used qualitative methods to evaluate student views

(although each had some problems). These studies are discussed in detail in Chapter

2. The results of these studies provided motivation to explore the conceptions of

undergraduate students in more depth.

1.4 Studying CS Conceptions

In the previous sections, I argued that:

1. There is good reason to think that students have different conceptions about

Computer Science across their undergraduate career.

2. These conceptions are likely to affect their education in a variety of ways

3. My previous work suggested the conception of CS undergraduates would be a

fruitful topic to study

In this section I describe two studies to elicit student conceptions of Computer Science.

See Table 1 for a summary of research questions and the studies that address them.

1.4.1 Thesis Statement

By examining the evidence of student concepts of Computer Science in undergraduate

students, I believe it will be possible to:

11

Table 1: Summary of research questions and studies
RQ1: What
types of CS
field conceptions
exist in CS
undergraduate
students?

H1. CS majors will
exhibit a changing under-
standing of CS, initially
potentially problematic
but becoming more
productive.

Grounded theory analy-
sis based on interviews
with students, student
surveys, advisors

Study 1
n = 37

H2. Multiple productive
conceptions will be found
in graduating undergrad-
uate students.

Grounded theory analysis
based on interviews with
students, student surveys

Study 1
n = 37

RQ2: Do po-
tentially prob-
lematic CS
conceptions
affect student
educational
decisions?

H3. Potentially prob-
lematic conceptions of CS
will affect educational de-
cisions.

Grounded theory analysis
based on interviews with
students

Study 1
n = 37

RQ3: What is
the prevalence
of different
kinds of con-
ceptions among
the CS major
population?

H4. Students conceptions
will vary across the stu-
dent population, with po-
tentially problematic con-
ceptions persisting after
introductory coursework.

Survey (instrument based
on grounded theory)

Study 2
n = 99

1. Characterize changes in student understanding of the CS field

2. Develop a preliminary instrument that can be used to elicit student understand-

ing of the CS field

1.4.2 Study 1: Design

Study 1 is a qualitative study that focused on eliciting students’ conceptions of CS.

Study 1 addressed two main research questions:

RQ1: What types of CS field conceptions exist in CS undergraduate students?

RQ2: Do potentially problematic CS conceptions affect student educational de-

cisions?

12

To answer these research questions, I designed Study 1; a qualitative study based

on several data sources:

1. Interviews with CS counselors. Those who advise CS students have a large op-

portunity to examine a variety of student conceptions about CS, and especially

how these conceptions factor in to students’ educational decisions.

2. Interviews with students. I interviewed CS majors at three different schools

about how they view CS and how they feel that view has changed over time.

3. Survey Instruments. As I worked with students through interviews, I planned

to refine an open–ended survey instrument with questions that elicit student

conceptions of CS.

Students were drawn from various stages in their major, and varying levels of academic

success. To select which students to study, I engaged in theoretical sampling [18]:

selecting which types of students would be most likely to provide new insights based

on the analysis of interviews thus far. I used grounded theory [11] to analyze all

the data sources; the goal of the analysis will be to extract a general theory of the

various student conceptions of CS at different points in the curriculum. In accordance

with grounded theory practices, I interviewed until the theoretical categories achieved

saturation (i.e. new interviews do not generate new theoretical constructs). Each

interview took about 90 minutes in total. In the end, I interviewed 37 participants

(33 students, 4 Advisors).

1.4.3 Study 1: Results

My grounded theory analysis of student interviews of CS identified three main con-

ceptions of CS:

1. Theory–View: CS as Mathematical Study of Algorithms. Students who held

this view thought of CS as a primarily theoretical and mathematical discipline.

13

The design of conceptually difficult algorithms was most central to CS, as were

other mathematical ideas like Big O and NP–Completeness. Programming was

viewed as useful but more peripheral to CS, and students often emphasized that

CS could exist without any physical computer.

2. Programming–View: CS as Programming–Centric but Including Supporting Sub-

fields. Students who held this view considered CS to be mainly about pro-

gramming, but emphasized that other subfields were also necessary to do good

programming. Writing programs to solve large and technically challenging prob-

lems was the central activity. Students with this view varied on how important

non–programming subfields of CS were.

3. Broad–View: CS as Having Many Different Subfields. Students who held this

view thought of CS as mix of many different computer–related subfields. Theory,

Robotics, Programming, and (often many) others are all equally important

parts of a broad CS ‘umbrella’. In this view, comparatively little knowledge

was considered ‘essential’ to a Computer Scientist; students emphasized the

differences between subfields and the freedom to pursue different paths.

All three of these viewpoints were a high–level view of CS. Students did not know

many details about subdisciplines of CS or the content of future courses. Details of

the three main conception types are covered in Chapter 4.

Beyond simply cataloging conceptions of CS, I also probed how students made

educational decisions. My interviews suggested students make educational decisions

in a way that initially seemed arbitrary. Students in CS generally did not have specific

career goals or skills they were hoping to learn in Computer Science. As a result, they

did not worry about which courses or specializations would best help them achieve

their goals. Instead, they were mostly concerned about finding an area of CS that they

would be well–suited for. They measured how well–suited they were for a particular

14

area by how enjoyable they found classes in that area.

Students would explore different classes, relying on the curriculum to ensure to

ensure that they did not make any educational mistakes. As a result, they did not use

their conception of CS to reason about class and specialization choices. More details

about the way students made educational decisions and the role of conceptions and

enjoyment is covered in Chapter 5.

1.4.4 Study 2: Survey of Students in a CS Class

RQ3: What is the prevalence of different kinds of conceptions among the CS major

population?

From the qualitative work in the previous study, I devised a preliminary survey

instrument that can be used to assess student alternative conception prevalence on

a larger scale. The survey included both closed–form and open–ended questions. I

tested and revised the survey using a thinkaloud protocol. Finally, I used the survey

to evaluate the prevalence of CS conceptions in one class. I also attempted to build

a programmatic classifier to classify student conceptions based on the closed–form

responses alone.

1.4.5 Study 2: Results

All three of the major conceptions were recognized in students. The programming–

view was the most common (41%) followed by the broad–view (27%) followed by

the theory–view (8%). I also performed post–hoc statistical analysis on the results.

Membership in underrepresented groups seems likely to affect conception, although

this is not a strong statistical claim. The programmatic classifier was 74% accurate,

but would still need to be improved for larger scale research work. Chapter 6 presents

the results of Study 2 in detail.

15

1.5 Summary

This chapter has presented an overview of the argument that CS conceptions affect

student thinking and are worth studying. The next chapter provides a more detailed

version of this argument, with a more complete analysis of previous work in student

conceptions. This chapter has also provided an overview of my research and results.

The main thing to keep in mind from this chapter is that my work has two main

goals. First, I want to understand what conceptions of the field of CS exist in under-

gradute CS majors (and how prevalent they are). Second, I want to determine how

undergraduates make educational decisions and if problematic conceptions of CS lead

them to make ill–advised decisions,

16

CHAPTER II

PREVIOUS WORK

This chapter covers five main topic areas:

1. Student Conceptions. Studies on students’ views of science, student concep-

tions in general, and how conceptions might affect content learning. This topic

includes examples of qualitative approaches to understand student views.

2. Differing Expert Definitions of a Field. My work is made more complicated by

the fact that there is no single “right” concept of Computer Science. This section

discusses the controversy and how decisions of definition have real consequences

for students.

3. Studies of Enjoyment and Decision Making. There are a great number of psy-

chological theories about how decisions are made. I look at theories of how

enjoyment motivates decision making and at the Eccles model, which has been

used to study educational decisions similar to the ones reviewed in this study.

4. Studies of Student Field Conceptions. Though my focus on the cognitive un-

derstanding of the field of CS has not been examined specifically before, many

studies have interesting results concerning how students conceptualize their

field. This section also includes a survey based study that I did which was

an early inspiration for this work.

5. Conceptions of CS in High School Students. The one of the main inspirations

for this proposed work is a study I did with high school students. This section

discusses the method I used on that project and what I observed of high school

student conceptions.

17

These sections draw on two different bodies of literature: educational research from

other fields and CS–specific education research. Disciplines like science and engineer-

ing education research are often older and have established methods. CS–specific

research give more information about the specific attitudes and problems that CS

students have.

2.1 Student Conceptions

My focus on students’ understanding of their field draws heavily on existing literature

in education. This section covers three related areas of study:

1. Epistemology of Science. One area of science education research that is very

close to studying field conceptions is research into student beliefs about science

(e.g. role of experiments in science, differences between laws and theories, etc.).

2. Alternative Conceptions. Alternative conceptions is the idea the students may

have their own concepts for topics instructors wish to teach, and that these

existing student conceptions are resistant to change.

3. Relationship Between Field Conceptions and Learning Content. There are sev-

eral different studies that suggest that having a greater understanding of a

particular field makes it easier to learn content in that field.

2.1.1 Epistemology of Science

Though teaching science facts and theories is important to educators, it is not usually

the only goal. Educators often wish students to learn truths about the nature of

scientific endeavor. It is important for students to learn the relationship of scientific

theories to evidence, how various scientific methods work, the differences between a

hypothesis law and theory, and how scientific knowledge is tentative [68]. These “big

ideas” of science are often referred to as teaching the nature of science (NOS) or as

the epistemology of science.

18

Although teaching the epistemology of science is important to many science ed-

ucators, teaching the epistemology of science is difficult. In general, research in this

area shows that precollege students often have simplistic views of science and this

result has been confirmed by many different studies [51]. For example students often

[68]:

• Characterize scientific truth as coming directly from experiments rather than

understanding the role of analysis and interpretation

• Fail to distinguish correctly between theories and evidence for those theories

• Describe hypotheses theories and laws as basically the same thing but with

different levels of evidence

Problems with student epistemology of science has been shown to be present in stu-

dents throughout middle school and high school and even with science teachers [51].

This section will talk about two aspects of epistemology of science research that is

relevant to student conceptions of CS. First, I will review how student epistemologies

have been elicited. Second, I will examine the relationship between student episte-

mologies of science and pedagogy.

2.1.1.1 Eliciting Student Epistemologies of Science

Eliciting student epistemologies of science is actually a very similar problem to elic-

iting student conceptions of CS. Similar to CS, although there is general agreement

about what the endeavor of science is among experts, there is also some debate. Epis-

temologies held by students bear little resemblance to the epistemologies of experts

and even expert educators may not really know what epistemologies students have.

Finally, there are difficulties of terminology: even if students do have “expert–like”

epistemologies of science, they are not likely to use the same words that experts would

use.

19

There is robust debate on the correct way to elicit student epistemologies of sci-

ence [68]. Most of the early work focused on quantitative measures of science, but

criticism that researcher–designed quantitative instruments were not truly measur-

ing students’ viewpoints has motivated more qualitative approaches [51]. Aikenhead

and Ryan, for example, argue that attempting to measure student epistemologies of

science without understanding student views and interpretation makes it impossi-

ble to determine what quantitative survey results actually mean [2]. In their work

designing an instrument for assessing student epistemologies of science, they found

that semi–structured interviews provided the most unambiguous measure of student

views, but that doing interviews was very time intensive. They analyzed students’

written arguments to design multiple choice questions that could be deployed on a

much larger scale [2, 67].

One criticism of this research which is particularly relevant to conceptions of

Computer Science is that it is not reasonable to assume that student conceptions are

coherent [68]. For both epistemologies of science and conceptions of the field of CS,

experts are much more likely to have thought deeply about the issue and developed

a single universal view. Students’ views on the other hand, may be “inconsistent,

fragmented and possibly unstable” [68]: in that sense, asking abstract questions like

“how would you define Computer Science” is not likely to yield accurate results.

Sandoval argues that student reasoning can be mostly clearly seen when it is connected

to their practice of developing specific scientific artifacts [68]. Similarly, I found

student reasoning clearest when discussing educational decisions they had actually

made and their reasons for them. However, this sort of contextualized reasoning is

difficult to do in a short survey like the one developed for Study 2, so this issue of

assuming a single coherent view remains a concern both for Study 2 and more broadly.

20

2.1.1.2 Teaching Epistemology of Science

One of the things that differentiates student epistemology of science and conceptions

of the field of CS is that teaching epistemology of science has been an explicit curricu-

lar goal as early as 1920 [51]. Because of this, a considerable amount of effort has been

devoted to attempting to teach epistemology of science to students. In particular,

researchers have studied whether exposure to inquiry based science courses (some of

which draw explicit connections to epistemological topics, and some of which do not)

can improve students’ epistemologies of science.

The research has found some educational approaches that improve students’ scores

on epistemology of science assessments, but finding a good approach is by no means

a solved problem. Science teachers themselves often have poor epistemologies of

science [51]. Educators often have to tradeoff focusing on learning science content

with learning epistemology of science [51]. Activities designed to simulate scientific

inquiry turn into replicating some existing experiment; implicitly conveying incorrect

ideas about the purpose of experimentation [68]. Students can do authentic activities

correctly (e.g. design experiments) but still have difficulty abstracting ideas into a

general theory of science [68].

This area of research suggests is that even when students are exposed to authentic

CS activities in classes, they can still have difficulty abstracting that idea into an

overall view of CS. Even when CS curriculum is designed to teach about the field

of CS (e.g a breadth–first introductory CS course [25]), it might still fail to affect

students’ abstract reasoning. Overall, the epistemology of science literature suggests

that helping students understand the nature of a field is at least as difficult as any

other challenging educational goal.

21

2.1.2 Alternative Conceptions

Another area of research that heavily influenced this work is alternative conceptions

research. In contrast with the epistemology of science work above, alternative con-

ceptions work usually focuses on specific science conceptions (e.g. force). Alternative

conceptions provide a good perspective on how student views can develop in ways

that can surprise educators.

2.1.2.1 Alternative Conceptions in Science Education

Based on constructivism and the learning experiments of Piaget, alternative concep-

tions research begins with the idea that students often develop cognitive models of

science that differ from experts. The “alternative conceptions” that students have

are accurate enough for everyday life, and maybe even accurate enough to pass sim-

ple testing, but cause students to reason incorrectly in key ways. For example, a

physics–based alternative conception is Aristotelian motion; in which objects in mo-

tion naturally stop unless force is applied [62]. This can explain most ordinary phe-

nomena students come into contact with, but is very different from the way physicists

view motion. By understanding how alternative conceptions affect student thinking,

science educators believe that better educational approaches can be developed.

Science researchers have found students to have alternative conceptions in every

area of science and these alternative conceptions cut across normal social boundaries

like race, age, and cultural background [79]. But what is most interesting about

alternative conceptions is that they are very often resistant to instruction; Wandersee

et al. call this resistance “the most reported finding in the field” ([79, p.190]). Gilbert

et al. [39] have classified the diverse ways students with an alternative conceptions

may respond to instruction that contradicts their beliefs:

• Students may simply leave their original conception unchanged.

22

• Students may construct two views: one for answering instructor questions and

one for explaining real world situations.

• Students may misinterpret the new information as confirming their existing

belief.

• Students may construct a hybrid idea with elements of the contradictory view-

points.

These sort of responses underscore the need for careful analysis to determine if stu-

dents have alternative conceptions. Poorly constructed instruments can mistake “hy-

brid ideas” or “two views” responses for an expert–like understanding. Given that, a

large challenge in alternative conception research is designing reliable tools to deter-

mine what student alternative conceptions are.

2.1.2.2 How Alternative Conceptions are Elicited

The process of determining student alternative conceptions generally begins with

a combination of instructor intuition and open–ended questions. One example is an

early study by Osborne and Gilbert [62] in which students are asked general questions

based on simple drawings. For example, students are shown a drawing of a man

pushing a motionless car. The interviewer might ask if there is a force acting on the

car. This single question can elicit a variety of alternative conceptions. A student

may argue that there is no force because there is no motion (force implies motion).

A student may argue that there is a force, because the person is “forcing” the car

(confusion with everyday word “force”). A student may argue that there is a force,

but that the car “wants” to stand still so it has no effect (ascribing desires to objects).

All these are potential alternative conceptions that Osborne and Gilbert identify.

The main difficulty of initial alternative conceptions research is choosing good

questions that elicit alternative conceptions. The man pushing car scenario is a

23

good question because it highlights the differences between the students’ everyday

conception and that of experts. As physics educators, Osborne and Gilbert have a

good intuition about the sorts of questions that make good starting points. Similarly,

in other areas ([14] and [33]) educators use known problematic situations to form the

basis for open ended questioning. Because science educators have a good intuitive

understanding of what situations students will find difficult, initial research can start

with a focused set of questions that students will have problems with.

When I began my research, there was no clear intuition about what questions will

elicit alternative conceptions about the field of CS. For that reason, semi–structured

interviewing focusing on students’ views and educational experiences worked better

than trying to ask ‘tricky’ questions. Once I was able to develop a theory of student

conceptions of CS (in essence, developing some instructor–intuition), it did become

possible to devise questions for the survey based Study 2.

2.1.2.3 How Alternative Conceptions Drive Pedagogy

The purpose of identifying alternative conceptions is not simply to understand what

“errors” students are making. Even if a instructor explicitly says an alternative con-

ception is wrong in the classroom, students will often maintain their old viewpoints

[73]. Many creative classroom techniques have been applied, some have proven suc-

cessful in some cases, but no generally reliable method exists for encouraging students

to change alternative conceptions to expert–like conceptions [79].

The benefit to understanding alternative conceptions is not simply to explain why

students are wrong, but also to understand the ways in which students are right.

Smith, DiSessa, and Roschelle [73] argue that alternative conceptions are established

because they work well for the practitioner and have many of the aspects of expert–like

reasoning. The goal of appropriate constructivist pedagogy is to use students’ existing

understanding to construct a better point of view: existing alternative conceptions

24

provide the resources necessary to do that [73].

One consequence of the need to work within the framework of existing alternative

conceptions is that not every expert–like conception is equally valuable to learners.

Lynn and Muilenburg [54] describe the development of heat curriculum that omitted

the expert idea of heat being caused by atomic motion. Lynn and Muilenburg argue

that the atomic motion model does not relate well to student everyday experiences

and that instead discussing “heat flow” provides a clearer basis for students to see the

benefits of scientific conceptions of heat. Though the idea of students adopting expert

conceptions is appealing, the goal is really to allow students to reason accurately and

provide a good basis for learning in the future.

The research on the relationship between alternative conceptions and pedagogy

has several implications for my research. Not every non–expert conception is nec-

essary bad. If a student conception is sufficient for the reasoning a student needs

to do, it may be good enough (especially considering that changing it will likely be

difficult). Also, this work suggests that CS educators need to build on the alterna-

tive conceptions students have—not simply attempt to replace them with the expert

version.

2.1.2.4 Alternative Conceptions in CS Education

The idea of alternative conceptions has also been used before in understanding stu-

dent conceptions of CS content. Even when not explicitly mentioning alternative

conceptions, a great deal of CS education research focuses on student conceptions

of programming, and how that understanding differs from experts (see [12] for an

overview). Recently, work is being done that explicitly references the science educa-

tion alternative conception community directly (e.g. [78, 42, 47]). This work has had

success in documenting alternative conceptions and designing instruments that can

test for specific conceptions.

25

Although alternative conceptions have been used to understand problems students

have with CS content, no work in CS has been done that explicitly uses the same

approach to understand problems student have with the field of CS. Researchers

studying student views of the field (discussed in detail later in this chapter) have

focused either on student affect or on the social environment of CS. The alternative

conception research I propose allows the CS community to look at views of the field

of CS from a cognitive perspective, and understand how different conceptions of CS

can affect student educational choices.

2.1.3 Relationship Between Field Conceptions and Learning Content

In my research, field conceptions of CS did not have a large effect on educational

decisions like which classes to select, at least at the undergraduate level. What is less

clear is if potentially problematic conceptions of CS can influence learning directly. Is

a student with a potentially problematic conception of CS less able to learn ordinary

CS content like algorithms? In my research, students commented about having a

lack of motivation to learn material that seemed ‘useless’ at the time (see Chapter

5). There is some research that suggests that having a problematic conception of

the broader field can directly hurt students’ ability to learn content, maybe in ways

students might not notice.

2.1.3.1 Field Conceptions and Transfer

One simple connection between an understanding of the overall field and learning

content is the issue of transfer. Because students’ have pretty undefined career goals,

they have to take a variety of courses that on the surface seem abstract and dis-

connected. In my interviews, students had difficulty identifying how what they were

learning might be useful to them in some later career. One of the robust findings of

the literature of learning transfer is that students often fail to connect abstract ideas

with their applied context unless they see the connection when these ideas are taught

26

[7]. This is one of the factors that makes teaching for transfer frequently unsuccessful

[3]. If students do not have a conception of CS that explains why CS concepts are

important, it is possible that they can learn the concepts in their original classroom

context and then be unable to transfer the ideas to later courses. In interviews,

students did sometimes incorrectly identify the purpose of specific content in their

classes. However, it is difficult to know if this made learning other aspects of CS more

difficult.

2.1.3.2 Field Conceptions as Representing Disciplinary Approaches

Another connection between understanding of the overall field and learning content

is the idea that there are implicit ideas at the “field level” that underlie approaches

to content. Donald argues that each discipline has its own essential methods of

approaching problems that are distinctive and difficult for students to internalize [26].

For Donald, a significant part of education within disciplines is conveying these ways

of approaching problems. A student expecting to use everyday (or even rigorously

scientific) approaches in a discipline where these approaches are not valued is sure to

meet with failure.

Some examples of this idea do have experimental support in the epistemology

of science literature. Having a strong understanding of the epistemology of science

helps skills like designing experiments. For example Deanna Kuhn asked students and

adults to reason about social problems (e.g. why prisoners commit crimes after re-

lease) as well as concrete experiments (e.g. determining what factors made simulated

cars go faster) [49]. In both cases, with both children and adults, Kuhn found her

subjects unable to differentiate between evidence and a plausible story to justify as-

sertions. Even factors like expertise in the issue under consideration did not improve

the quality of argumentation. However scientists were able to correctly design experi-

ments [48] without trouble. Kuhn argues this suggests that scientific reasoning is not

27

a simple extension of common sense. Although the design and analysis of experiments

may never be explicitly taught, reasoning correctly about experiments represents a

conceptual approach that people do not naturally develop without instruction.

2.1.3.3 Field Conceptions as Guides for Learning

A third connection between understanding of the overall field and learning content is

the idea that an accurate view of the field allows learners to view themselves as more

capable. This idea is analogous to Dweck’s work on intelligence [27], who showed

that learners who viewed intelligence as something that came from their own effort

were more academically successful. Songer et. al [74] attempted to establish a similar

connection for epistemology of science: that students who viewed science as facts to

be memorized would do more poorly than students who viewed science as integrated

knowledge that could be understood through reasoning. In the study, students who

viewed science as facts to be learned rather than as explainations that could be

changed had greater difficulties learning thermodynamics. Similar results were found

in several other studies ([68, p.646]). Attitudes about how a field like science ought

to be learned has affected some learning outcomes.

2.1.4 Summary

This section has reviewed three different areas of education literature. From the

epistemology of science and alternative conception literature, the main point is that

student conceptions are likely to difficult to anticipate. For the reason, a qualitative

approach was selected to elicit student conceptions in an open ended way. Similar to

others’ approaches, in Study 1 I elicited student conceptions and used the resultant

theory to build the survey instrument in Study 2.

Changing student conceptions is also difficult. In both the epistemology of science

and alternative conception literature, attempts to improve student conceptions with

28

pedagogical met with mixed success. Before CS educators can improve student con-

ceptions of the field, it is necessary to both understand students’ existing conceptions

and if those conceptions are likely to cause educational problems.

There is no simple well supported connection between field conceptions and suc-

cess in learning content. However, several different bodies of literature suggest that

student conceptions may affect student learning outcomes in ways students do not

expect. From interviews with students, students were not usually able to recall many

situations where a view of CS hampered their ability to learn (see Chapter 5 for more

details). Overall, the question as to whether problematic conceptions of CS affect

students’ ability to learn CS content remains unanswered.

2.2 Differing Expert Definitions of a Field

In the previous chapter, I introduced the idea of students having ‘potentially problem-

atic’ conceptions of CS but did not describe what I consider a ‘correct’ definition of

CS. Defining a field like CS is difficult. Both science and CS have a history of differing

expert definitions, and these differing definitions do have educational implications. In

this section, I discuss the various definitions and describe how I will evaluate student

responses despite the reality of differing expert viewpoints on CS.

2.2.1 Differing Expert Definitions of Science

Educators often agree that science education is important, but disagree about why.

In Rising Above The Gathering Storm, the Committee on Science, Engineering, and

Public Policy argues that science education is essential because innovation in science

and technology are necessary for improved national well–being and competitiveness

[17]. Other advocates argue that science is important because voting citizens must

weigh in on scientific debates or because science teaches important habits of mind

[71]. Each of these viewpoints on the goal of science education suggests different

scientific curricula.

29

There are also those who argue that standard educational approaches to science

education force students to adopt a westernized culture of science [1]. While this

might not seem like a bad thing to all educators, practically speaking, students who

are unwilling or unable to adopt the rules of science culture can be alienated and

not learn [1]. Moreover, if educators are serious in desiring a diversity of opinions in

the science community, then the goal is definitely not to repress real objections that

science is not moving in the right direction. It is a careful balancing act to teach

students science content while at the same time not implying the scientists naturally

know best or that certain types of people are not well–suited for science [5].

My research directly touches on these issues in regards to what is an appropriate

definition for CS and what is not. As CS educators, we wish to encourage thoughtful

debate on what CS ought to be. On the other hand, when students have a miscon-

ception that has the potential to harm them educationally, we hope educators can

guide them to a better definition of CS. The controversy about science makes it clear

that deciding whether a definition of is ‘good enough’ is not a value free choice: the

goal is to allow a variety of valid conceptions of CS while understanding how some

conceptions can cause educational problems.

2.2.2 Differing Expert Definitions of Computer Science

Debates about CS education parallel those of science education in many ways. There

are those that argue CS teaches good habits of thought [63, 80], those that argue

understanding CS is essential to good participation in modern society [66], and those

who argue that CS is training for jobs that are in high demand [24]. Even some

of the most famous practitioners of CS cannot agree if CS should be considered

science, mathematics, engineering, or art [22]. Some of this disagreement is a matter

of emphasis [52], but there are also arguments about whether subfields should be

considered part of CS (e.g. [32, 58]). Even when formal definitions for CS have been

30

attempted, they are not of a form that beginners could reasonably be expected to

articulate or reason with (see [23] for one such definition). As CS mingles with other

disciplines, the distinctions become even more complex; Rosenbloom [65] presents

an algebraic notation to describe the various ways CS can be combined with other

sciences. This problem has resurfaced again with the interest in “computational

thinking” : even among experts, a definition that everyone can agree with is elusive

[15].

This controversy makes it clear that my research cannot compare student concep-

tions to a single expert viewpoint on Computer Science. But not all the distinctions

that matter to experts have educational consequences for undergraduates: students

can think of CS as primarily artistic or primarily mathematical, and still have clear

views of what classes and content will help them achieve their goals. Because this re-

search focuses on conceptions of CS that have educational consequences, what is most

important is how students conceptualize the content of the undergraduate curriculum.

For all the discussion of ‘what CS is,’ the curriculum of CS undergraduate degrees

has a standardized set of topics to cover [10]. This standardization is what I will

use to try and assess student understanding. If a student has an understanding of

the topics covered in CS and why they are considered important, I will consider that

a productive conception of CS. If a student expects to learn things in CS that are

not related to the curriculum (or, in retrospect, believes instructors intended him

or her to learn something outside the curriculum), my research will consider that a

potentially problematic conception of CS.

Of course, it is also possible for students to understand the reasons they are taught

something, yet feel that some other content is actually more useful to them (e.g.

understanding that data structures was the point of the course, but feeling that the

C++ programming language is actually more useful). Although the reasons behind

the student’s choice are definitely worth pursuing in that case, by the definition of

31

this research, the student conception of CS is accurate. Given the wide ranges of

goals and viewpoints in CS, no one can second–guess what educational choices are

correct for an individual student. Students must be arbiters of what they wish to

learn; but it is important they make decisions with a clear understanding of CS.

2.3 Studies of Enjoyment and Decision Making

Students in our study used their enjoyment of classes as a key factor in making educa-

tional decisions. There are many psychological models of decision making, including

those that focus on issues of enjoyment [29]. In this section, we will look at a few

models of enjoyment in particular, and a few models that integrate enjoyment into a

larger decision making process.

2.3.1 Enjoyment

When students talked about enjoying or having fun in classes, they referred to a sub-

jective feeling in class or doing assignments. From a student’s perspective, enjoyment

is a emotional response. Research has identified a few factors that help cause the

feeling of enjoyment, however.

Csikszentmihalyi studied the subjective experience of experts in various fields

when fully engaged, a state he called “flow” [19]. While in the flow state, individuals

felt immersed in their activity and in control of their environment. To active this,

the challenge of the activity needed to match the skill level of the individual: it had

to be difficult enough to pose a challenge but easy enough that the individual felt it

was within their capability.

Deci and Ryan identify three main needs that drive intrinsic motivation: com-

petence (feeling skillful at a particular activity), relatedness (feeling connected to

others), and autonomy (feeling in–control and consistent with one’s sense of self)

[20]. Deci and Ryan argue that when these needs are satisfied, individuals enjoy the

32

activity and are motivated to pursue it in the future. For Deci and Ryan, the motiva-

tion to pursue the activity is more important than the subjective feeling while doing

it. Deci and Ryan note that when individuals are required to do a particular activity

for some other extrinsic reward (e.g. money) it tends to lower intrinsic motivation

[21]. But under certain conditions, extrinsic controls can become internalized and

motivate in a way similar to intrinsic controls. Thus, feelings of intrinsic enjoyment

are affected by factors that an individual is not aware of.

Although there are other theories of enjoyment [29], these two highlight a few

main points. First, people find certain activities enjoyable purely for the subjective

experience and separate from any external reward (e.g. status). For that to happen

certain conditions must be met. For example, the activity has to provide the right

level of challenge. Second, other factors do affect the feeling including larger social

forces like self identity [20]. Students can often identify some factors that helped

increase their enjoyment (e.g. related to existing interests, doing well compared to

other students), but there are also other reasons for their feelings they might not be

aware of.

2.3.2 Eccles’s Model of Achievement–Related Choices

Students are obviously motivated by more than simply how much they enjoy partic-

ular activities. Several models attempt to integrate ideas of intrinsic enjoyment, self

efficacy, social factors, etc. into a single unified model [29]. One model that is partic-

ularly well suited to student educational decisions is Eccles’s model of achievement–

related choices, which has been applied to a variety of educational choices including

selection of major and courses [28].

The Eccles model is an expectancy–value model: students made decisions based

on both their estimated expectation of success and what they expect to gain (called

the subjective task value). For educational decisions, the subjective task value has

33

several aspects [30]:

• Attainment value. Attainment value is the perceived benefit placed on a par-

ticular choice by a valued social identity. For example, if a student considers

their parents’ views important and their parents value majors with good career

prospects, CS might be a valued choice. If one’s gender is normally associated

with ‘helping others’, then choosing a specialization involved with helping others

reinforces a valued identity. Each student values different social identities (race,

gender, their particular peer group) but this is also an area where stereotypes

and other aspects of culture influence student behavior.

• Utility. Utility is the usefulness of a particular choice, leaving aside issues

of identity. Students might need certain courses to graduate, for example, or

might believe that a particular skill will help them solve a particular concrete

problem they expect to have.

• Interest-enjoyment value. Interest–enjoyment is how the subjective experience

of enjoyment is incorporated into the Eccles’s model.

• Cost. The Eccles model emphasizes that achievement–related choices often

come with a cost [28]. A decision to select one course makes it impossible

to take another. Eccles argues that this is what explains most variation in

educational decisions: students might be interested in a particular course, but

choosing to pursue it comes at the expense of another interest.

Students’ expectation of success is the second half of Eccles’s expectancy–value

model. What ‘success’ means in any particular context varies by student, but students

do consider their aptitude for specific courses and majors. This is in addition to

the fact that a lack of confidence can decrease enjoyment in models such as Deci

and Ryan’s [21]. In the Eccles model, expectations of success are determined by a

student’s previous educational experiences and social and cultural factors.

34

Studies have shown that the factors outlined in Eccles model do affect student ed-

ucational choices [30]. What is difficult to infer is how greatly each individual factor

enters into a particular educational decision. In my research, enjoyment was fre-

quently mentioned and attainment value type choices were mentioned less. However,

it is difficult to know if other factors (in particular student expectations of success)

might have affected student decisions in ways that they were uncomfortable talking

about in an interview. For a discussion of Eccles model and its relationships to the

results of Study 1, see Chapter 5.

2.4 Studies of Student Field Conceptions

In the previous sections, I have reviewed research related to methods of eliciting

student conceptions and the effects of conceptions on learning. We have also looked

at student enjoyment and how it affects educational decisions. In this section, we will

look at studies that have elicited student field conceptions and what they found.

2.4.1 Studies of College Student Field Conceptions Outside of CS

Several studies have attempted to understand how students relate to their college

major. Certainly students do not always make a well researched choice of major,

and students’ major choice are influenced by factors beyond how much interest and

aptitude they think they have [46]. Students often change major in college, and the

major change is often to a related field [4] which may suggest that they refine the

partly uninformed choice they made when they arrived.

Several studies have focused on engineering students. Engineering has high stu-

dent attrition [31] like CS. Edward’s study [31] attempts to look at the problem both

qualitatively and quantitatively. Edward claims that students initially envision engi-

neering as hands–on with a mathematical component, but are unprepared for the level

of abstraction in the introductory curriculum. As their career in engineering contin-

ues, students find the later courses more practical. In the end, 66% of the students

35

felt that their classes prepared them well and looked forward to their career while “the

remainder were dreading what they saw as a continuation of slogging through mathe-

matical calculations” [31]. Edward recommends that the curricula explicitly connect

between the theory and everyday engineer practice in order to prevent attrition and

disenchantment with the major.

In a study that reports similar findings, Stevens [75] analyzes the results of lon-

gitudinal interviews with students in engineering programs. Stevens emphasizes that

processes which seem homogeneous (student recruitment, development, and eventual

success or failure in the major) result in idiosyncratic student experiences. Students

attempt to display what Stevens calls “accountable disciplinary knowledge” (ADK):

things that, in the view of experts, position them on the path to engineering. Students

reason about the nature of the field, using the ADK they are expected to display as a

guide, but what counts as ADK varies depending on the point in the curriculum and

other contextual factors. As a result of this, when the ADK students are expected

to display changes they experience stress. Students who initially struggle with the

ADK of introductory courses can distinguish themselves later. Failure to display the

expected ADK causes students to be shut out of the major or makes the students

question their appropriateness for engineering. Stevens argues that deep qualitative

analysis is necessary to discover the way in which the structures of the curriculum

influence different kinds of development.

ADK is one way of thinking about the effect of a distant, disembodied field on

the education of individual students. The field (which includes both industrial and

academic experts) shapes what counts as ADK. ADK then structures the experience

of students in the major. But simple departmental requirements are only part of

the picture: students communicate with each other and develop a intuitive under-

standing of what the requirements mean [75]. Similar to the social groups discussed

in Lave and Wenger [50], students form a community of practice that transmits an

36

understanding of overall field structure. But unlike the groups studied by Lave and

Wenger, the community of practice of engineering students at particular school is

not really independent. If students are to come to an accurate view of their field,

then their community of practice must be somehow connected to larger distributed

community of practice of engineers.

How does a local community of practice relate to this larger discipline? This idea

of a distant community of practice is examined in Nespor’s [60] study of physics and

management students. For both physics and management students, the community

of other students transmitted a very distinct conception of their field.

Nespor’s [60] observation of the practices of physics students suggest that the

students and teachers use objects like textbooks to replicate a consistent community

of practice. Nespor argues that physics’s highly abstract notation and traditional

problems makes this replication possible. Physics content shaped the community of

students; it encouraged them to devote a huge amount of effort to constantly solve

textbook problems. Because the act of solving these traditional problems takes so

much effort, physics students need to work together in groups that make a community

of practice locally at the school. Because the work has as its focus textbooks, lectures,

and the actions of a few teachers, the community is consistent with physics student

communities across many schools. The consistent use of problems and notations to

generate a similar community of practice is what makes physics a discipline that

can replicate itself across long distances (though, as Nespor points out, social and

structural factors are in place to make this replication possible).

Nespor’s example of management majors provides an interesting contrast. In this

case, the curriculum is disjointed and did not build to generalized abstractions. Stu-

dents generally did not have a respect for what they were learning in class; they

viewed their instructors as out of touch with the true practice of management. But

37

the majors nonetheless adopted a set of practices based around appearance and in-

terpersonal interview–type skills. In this sense, the student–generated curriculum

management majors adopted mimicked some of the characteristics of the physics cur-

riculum (consistent, requiring practice, involving personal investment and elaboration

outside of class). Nespor argues that this might even have been correct, that perhaps

management majors were right in their view that the true management community of

practice was based around the interpersonal skills they practiced. It is definitely true

that the students reproduced the practices of a real community beyond the individual

college. In both management and physics, student effort and the content of the field

allowed students to feel they were a part of a community that they were not directly

connected to.

This research suggests several things for my results. Firstly, because CS, like

engineering, is not easily understandable by introductory students, students may

struggle to understand what counts as ADK in CS. As in Edward’s research [31],

programming which took a central in introductory CS courses was a large part of

students’ vision of CS. For some students, programming was the entirety of CS —

for others it was a large component but not everything. Although my study was not

longitudinal like Edward’s was, it is reasonable to think that student views of CS

expands for many students as later classes include course work that includes different

types of ADK.

Nespor’s research on how communities of practice are replicated suggests a deep

relationship between the actual content of the discipline and the ways students come

to learn it. Certain structures within CS may encourage students to focus on the

academic curriculum, as in physics, others may encourage students to construct their

view of disciplinary knowledge in contrast to their instructors, as in management.

Whatever the result, it seems clear that careful qualitative analysis of student concepts

of CS is likely to be able to draw a connection between students understanding of CS

38

and the way they make educational choices.

2.4.2 Studies of Student Field Conceptions of CS

2.4.2.1 Research on Conceptions of Precollege Students

Much of the research in conceptions of the field of CS has focused on the perspective

of precollege students, generally middle school and high school students. It is difficult

to characterize the results simply: students are often positive about technology, but

simply enjoying doing “CS type” activities does not translate into feelings that CS

is a good career [55]. Students obviously use technology regularly, but often have

concerns about a computing career being “sitting in front of a computer all day”

[81]. Developing accurate instruments is difficult [41] because small changes can sig-

nificantly alter how students respond. The large–scale WGBH study [36] of students

age 13-17 indicates that careers in Computing interest students across ethnic groups,

although young men like computing more than young women.

It seems that students do not have a ready definition for Computer Science in

general. Greening [40] asked high school students to complete the sentence “Computer

Science is mostly about. . . ”: the majority said they didn’t know or provided trivial

answers like “computers”. Only a small percentage mentioned using applications,

something that others have identified as a student misconception. Similarly, in a

student of high school calculus students, Carter [9] found that 80% of students left

blank the question “What is your impression of what Computer Science Majors learn?

(leave blank if you have no idea)”. Of course, the general population may not be a

good guide for the attitudes of those who major in CS: obviously everyone who chooses

CS as a major as at least some preconceptions for what it will be about.

2.4.2.2 Research on the Postsecondary Community of CS

At the postsecondary level, several qualitative studies have been done to characterize

the student experience in the CS major. The most well–known of these is Margolis

39

and Fisher’s study of women in the CS major at Carnegie Mellon university [57].

Margolis and Fisher focus on barriers to women’s full participation in CS, and their

work has many interesting reflections on how female students contrast with their male

counterparts. But the work also has several tantalizing hints that reflect both the

diversity of student conceptions entering CS and their evolution over time. Students

entering CMU view CS as a natural fit with their role as computer wizards, an

opportunity to pursue larger social goals, or as part of a opportunity to achieve

financial success. As time progresses for students who stay in the program, a growing

connection to CS both on a personal and academic level develops ([57] pg. 103–

107). Margolis and Fisher look at this problem through a social lens: We hear

about students’ feelings of greater integration and success, but less about cognitive

changes. Does the diversity of initial views of CS eventually converge, remain fixed, or

change to another set of diverse viewpoints? Margolis and Fisher provide an excellent

illustration of the deep description a qualitative study can provide, but there are many

things that remain to be understood about the student experience in the CS major.

Another suggestive study is Rasmussen and H̊apnes’s analysis of three social

groups within the CS major: computer hackers, dedicated students, and “normal”

students. Based on interviews with students, the authors argue that the three groups

view both the social environment of the major and CS in a different way. Most

interesting, Rasmussen and H̊apnes argue that the perspective of the majority of

students (the group the authors term as “normal” students) is actually defined in

contrast to that of the professors. To the “normal” students, the professors were dis-

connected from the practical reality of computing jobs and too similar to the hacker

subgroup that the normals did not wish to associate with. In terms of the nature of

CS, “normal” students were interested in user interfaces and other parts of CS that

were considered practical. How these views were reconciled into an overall concept of

CS is again outside of the scope of the primarily social analysis that Rasmussen and

40

H̊apnes focus on.

The qualitative research that has been done highlights the stressful, occasionally

unsuccessful, ways in which students are integrated in CS. Many of these barriers

are social, but both of the studies above also highlight the fact that students vary

in their reasons for pursing CS and that these reasons change as the students learn.

Obviously, it is important that departments ease cultural problems that make students

feel like they do not belong. But both these studies suggest that CS educators need

to understand the various perspectives on the field, and expect that these alternative

conceptions of CS will have real consequences in what students expect in the curricula.

2.4.2.3 Research on How CS Student Conceptions Change

While more is known about student conceptions at the beginning of the CS major,

there is evidence to suggest that the student conceptions do change. McGuffee [59]

describes student responses to the question “What is Computer Science?” He reports

that at the beginning of CS1, student conceptions are too broad, while at the begin-

ning of CS2 students definitions are too narrowly focused on programming. This is

consistent with Steven’s research [75] that students overfocus on what they are taught

in introductory classes.

Biggers et al. [6] compares conceptions of CS in seniors: some of whom left the

CS major and some of whom stayed in the major to completion. One of the main

differences between the stayers and the leavers is that stayers are more likely to de-

fine CS broadly while leavers were more likely to define CS as simply programming.

Because the majority of CS students left earlier in their careers, there are two pos-

sible interpretations of this result. One is that all students initially think of CS as

programming, but then that conception changes as they are exposed to more courses.

The other is that students with broader conceptions are likely to persist in the major,

while those who think of CS as just programming are likely to leave. Either way, the

41

study suggests important relationships between changing conceptions and student

retention.

A third study on conceptions focuses on student conceptions about software en-

gineering. Sudol and Jaspan measured student agreement with statements about

software engineering that were tested on experts to ensure correctness [76]. They

found that students had misconceptions compared to experts, and in general these

misconceptions decreased over time. However, project courses in operating systems

and web applications seemed to increase misconceptions, despite the fact that these

courses are taught by faculty with real development experience and focus on software

engineering concepts. The authors hypothesize that the group work in these classes is

not realistic enough and therefore causes students to endorse bad practices. Clearly,

even when students have been exposed to expert viewpoints, they readily develop po-

tentially problematic conceptions based on their own observations and experiences.

2.4.3 Attitudes About Computing in Postsecondary Graduates

A previous study of mine also provides evidence of CS conception change for CS

majors near graduation. The goal of the study was to identify whether student’s

college experiences, including interest–targeted introductory CS courses, had an affect

on student attitudes about computing four years later. This project compared essays

from students in different majors about computing; one of the interesting results of

this study was how different CS majors’ essays about computing differed from the

other majors.

One of the difficult parts of this project was eliciting student experiences in a way

that was not leading. Previous work had shown that students were positive about

their CS courses [77]; the goal of the study was in part of to see if students would

bring those courses up unprompted as significant computing related experiences. The

method we chose was based on the techniques of Schulte and Knobelsdorf [69] who

42

asked beginning CS majors and 3rd year psychology students to write “computing

autobiographies”. These autobiographies revealed interesting differences in attitudes,

while giving participants a great deal of control to discuss whatever they felt was

personally significant.

In my study, we collected data from 4th year students at Georgia Tech [43]. The

autobiographies of CS majors were clearly different from students in other majors.

CS majors concentrated their autobiographies on the breadth on the discipline. Other

majors were often extremely enthusiastic, but focused on technology itself as a fun

thing to play with. If the student population can be considered similar to those

interviewed by Schulte and Knobelsdorf [69], it is reasonable to suspect that this focus

on the broad possibilities of Computer Science represents a change in conception from

CS freshmen. It is also consistent with the results of Biggers [6] and Yardi [81] which

similarly find CS majors who focus on the breadth of the discipline. From this, I

suspect it is likely that this breadth–focused CS conception may be at least one of

the conceptions my proposed work is able to elaborate. Given the limited data in

the autobiographies, it is difficult to know if this breadth–focused conception leads

to good educational choices.

Although this study provided some hints about the ultimate result of my research,

the autobiography format had several disadvantages. First, though it allowed many

students to respond, because they were fully in control of what was written about,

there was no way to probe understanding. The focus of the analysis therefore, had

to be on what students chose to mention rather than the cognitive aspects of their

conceptions. Second, the ability to analyze a large number of autobiographies is

less useful in qualitative work: it was more useful at that stage to analyze deeply

and sample students who’s attributes contributed most to the researcher’s tentative

understanding [18]. Still, as one of the few studies to probe CS conceptions for

students later in the major, it was an important foundation for my hypothesis that

43

students conceptions change throughout a student’s time in a major.

2.4.4 Summary

Previous research into student field conceptions had several interesting results and

affected my expectations for my research. From the studies in engineering and other

fields, I expected students to have a evolving conception of their field which would be

different from what their professors might envision. In my interviews, students did

describe their views changing views but were very trusting of the CS curriculum (in

constrast to Nespor’s management students). From the work in pre–college concep-

tions of CS, I expected students to enter the CS major with at least some confusion

about the field. Students did talk about their early views changing. From the work

in later college conceptions of CS, I expected to see a broad view of CS in at least

some students. In my interviews, I saw a broad view in some but not all students.

Overall, this work provided direction for my initial interview approach by giving me

some idea what to expect.

2.5 Conceptions of CS in High School Students

Prior to the research outlined in the document, I conducted a study of high school

students’ conceptions of CS. This study provided clear evidence that students be-

fore formal training in CS have large misconceptions and these misconceptions can

be difficult to dislodge. The high school group that was studied was unusual: all

the students had experienced a great variety of interesting CS interventions: fun ap-

proaches designed to focus both on programming and the innovative potential of CS

[8], but most of the students had never taken a ‘formal’ CS class.

The study method consisted of four parts:

1. Concept Map Instruction. We gave the students a one hour introduction to

concept maps, based on the instructions in [61]. Finally, after the hour long

44

introduction, the students were given twenty minutes to build a concept map

about Computer Science.

2. Pre–Interviews. After the students build the concept maps, individual students

were called into interview. The interview focused initially on the student’s con-

cept map and asked them to explain their reasoning, with particular attention

to areas that suggested misconceptions. Then the interviewer presented a few

example activities and asked if these activities are part of Computer Science

and if so where they fit on the student’s concept maps. Finally, the interviewer

asked some questions about how the student might interest a friend in Computer

Science and what attributes the participant considered essential for success in

Computer Science.

3. Class. A week after the interview, the students attended two 4-hour class

sessions (1 week apart) that attempted to further elaborate their concepts of

Computer Science.

4. Post–Interviews. A week after the last class session, the students were asked to

build a second concept map about Computer Science. They were given a copy

of their original concept map to use as a reference if they wished. After building

the map, they were interviewed following a similar script to the pre–interviews.

As part of the post–interview, the students were asked to compare and contrast

their concept map of four weeks ago with their current one.

It was clear from both from the concept maps and interviews that students had

significant potentially problematic conceptions about CS. For example, students fre-

quently believed that CS could train students for non–CS jobs that simply involved

computers. For example:

Interviewer: [What would you say if someone asked] “If I were to get a

45

degree in Computer Science, could it be my job to use photoshop profes-

sionally?”

Student: I’m sure. I mean Pixar and all the Disney companies they are

using digital art media now. All their movies are digital pretty much.

Marketing too there’s a lot of digital applications to design marketing

advertising sorts of things.

As in the alternative conception literature [79], student conceptions colored their

perceptions. Students frequently remarked about a presentation they had received

about how CS could be used in medicine. However in the students’ interpretation,

CS people were responsible for using computers in places like hospitals.

Futhermore, there seemed to be ways in which student conceptions of CS influ-

enced their educational choices. One of the students we interviewed was considering

enrolling in Computer Science at Georgia Tech as part of the Digital Media special-

ization of CS. Contrasting this to a traditional art degree, he/she said:

Student: You could probably get more into graphics and creating art with

the computer and animating things. Where as in the art [program] you

might be more dealing with the pure painting, sketching, sculpting.

Though certainly one could use the understanding of computer graphics and sim-

ilar topics in the CS degree to create innovative art, this student seems to be envi-

sioning something more similar to a digital media program at an art school.

What made this situation even more concerning was that students did not, in

general, discard their potentially conceptions after they were addressed in class. One

problem was that there are few resources for understanding the real internal structure

of the field of CS in a way beginning students can understand, outside of an expert

explaining. Contrasting before and after concept maps (see Figure 1) the student’s

conception of CS has more recognizable categories, but within the categories there is

46

Computer Science (Pre)

Computers

effects

Programs

have

Companies

have

HTML
Python

Java
Robotics

examples

Apple
Dell

examples

contain these

Windows 7

Dell came up with contains these

Consumer

simpler for to use

Computer Science (Post)

Modeling and Simulation

example

Programmable Devices

example

Distributed Computing

subcategory is

Bioinformatics

subcategory is

Theoretical Foundations

4 other nodes

DNA Sequence

connect to

Major Research

example of

models Centralized Algorithms

Genome annotation

it is DNA sequencers

sequence analysis

goes into more detail

track DNA

it can

Figure 1: Pre and post concept maps about Computer Science (digitized from the
handwritten form for clarity). You can see both the student has a more recognizable
categories within CS, but that within these categories there is still confusion.

47

still confusion. Even for concepts students can readily understand conceptually, like

distributed algorithms, the resources available outside of the classroom are so focused

on experts that students can’t understand what they discover on their own:

Interviewer: So let’s look at your modeling and simulation concept cat-

egories. First off, you have under there distributed computing. What is

it?

Student: It’s kind of like um when I researched it it was kind of like finding

stuff kind of I looked on a couple I think I looked on one website and

learned a little about it I thought it was like technical part of computers

kinda. . .

Interviewer: So you said theoretical foundations and under that you put

centralized algorithms and models. So explain what’s a theoretical foun-

dation, and why are centralized algorithms and models beneath that?

Student: Well I didn’t really know that much about theoretical founda-

tions. So when I kinda went under that these were the categories that

were underneath it. I really don’t know what a centralized algorithm is

but I wanted to take some more time to learn that. . . it looked interesting.

It is from this study that I took my some of my key hypotheses:

• Students may have potentially problematic conceptions about CS.

• These potentially problematic conceptions influence their educational choices.

• These potentially problematic conceptions are resistant to change.

There were obviously significant differences between the students in this preliminary

study and the groups I studied in Study 1 and Study 2. These students (in general) did

not intend to study CS professionally. They were high–school students and therefore

48

are in a very different environment that CS majors are. Based on the results of Study

1 and Study 2, the environment and courses in CS program do seem change student

conceptions from those that I encountered in high school students.

2.6 Summary

This chapter reviewed related work in five main areas. Here is a summary of the most

important points to take away:

1. Student Conceptions

This section reviewed three bodies of literature: epistemology of science re-

search, alternative conceptions research, and research into the relationship be-

tween student field conceptions and learning content. All three discussed the

issue that students conceptions are likely to be slow to change and designing

educational interventions is difficult. Each area had unique insights however.

Some of the methodology of the epistemology of science research is similar to my

own. Epistemology of science is about helping students understand the scientific

process. Similar to conceptions of the field of CS, views of the scientific process

are difficult to elicit because students and experts think very differently. Similar

to Study 1 and Study 2, qualitative approaches are often used to elicit student

views in an open–ended way and then these open–ended views are used to

develop survey instruments with constrained choices [2, 67]. In that sense, the

methods of the epistemology of science literature is close to my own approach.

Alternative conception research was the original basis for my work (and why I

call student views of the field of CS ‘conceptions’. The basic premise is that

students come to the classroom with existing ideas about how the world works

called alternative conceptions. These conceptions are resistant to change, es-

pecially to classroom instruction techniques that simply present the ‘expert’

49

viewpoint [79]. Understanding alternative conceptions is important not just be-

cause they must be addressed, but because these existing conceptions provide

the resources from which students necessarily construct new knowledge [73].

There are several lines of research that link field conceptions and learning. The

educational literature of transfer suggests that understanding the reasoning for

learning concepts is important in applying them beyond the classroom [3]. Don-

ald suggests that individual disciplines have implicit approaches that students

need to understand [26]. Songer and Linn connect field conceptions to individ-

ual learning strategies [74]. Each of these studies link specific conceptions to

specific academic performances, but specific instances of field conceptions caus-

ing learning problems were rare in my interviews. A qualitative approach might

not be sufficient to determine if problems with conceptions can affect learning

in ways students’ are unaware of.

2. Differing Expert Definitions of a Field.

Both science and CS must deal with the fact that there is no single expert

definition of the field that everyone can agree on [71, 22]. In both science and

CS, there are concerns that certain definitions make it more difficult for some

students to participate [5, 57]. This creates a difficult situation: educators

wish to encourage a diversity of opinions while at the same time correcting

conceptions that are problematical.

The controversy makes it clear that this research cannot simply compare stu-

dent conceptions to a single ‘expert’ view. The goal of this work is to focus

on conceptions that cause students to make poor educational choices: therefore

if students understand the basic curriculum of CS [70] and why it is consid-

ered important then their conceptions are likely accurate enough to prevent

educational mistakes.

50

3. Studies of Student Decision Making.

In my research students often used how enjoyable their class experiences were

to make educational decisions. Based on psychological research, the subjective

experience of enjoyment is based on several factors. The difficulty much be

challenging, but allow the student to feel confident [21, 19]. The student must

feel in control and connected to others [21]. Student enjoyment is also related

to internalized societal forces that a student might not be aware of.

Beyond the question of enjoyment, the Eccles model of achievement related

choices suggests that students use enjoyment as only one of several factors

influencing decisions like what course or major to select. Students consider what

their likelihood of academic success and the values of different social groups [30].

Students also consider that each choice has a cost in terms of time and other

opportunity. Although all these issues did come up at various times in our

interviews, enjoyment of classes played a more dominant role than the Eccles

model might suggest.

4. Studies of Student Conceptions.

In engineering and science, qualitative studies have shown that students often

perceive their majors in unexpected ways. Stevens’s work [75] suggests that

context strongly influences what skills students associate with the major, and

therefore how successful they perceive themselves to be. Nespor argues that the

structure of the disciplinary knowledge itself creates different social structures

that change student experience. Both authors show the benefits of detailed

qualitative analysis to uncover how academic structures affect student learning

in unexpected ways.

In CS education research, research on precollege students suggests that students

do not (in general) have a good definition for what CS is. Qualitative studies

51

on the community of CS majors suggests that students do have different CS

conception, and these conceptions cause them to make different educational

choices [57, 64]. Survey–based studies provide evidence that student conceptions

do change [59, 6]. But although all these studies provide interesting hints, no

study has attempted to understand how student conceptions in CS change across

all four years of their undergraduate career.

5. Conceptions of CS in High School Students.

Similar to previous work, my study of high school students provided evidence

that high school students have poor conceptions of CS. Even when problematic

aspects of students’ were address directly in class, students maintained prob-

lematic conceptions of CS. At least in some cases these conceptions seemed to

influence student educational decisions. Though this study was not explicitly

designed with the idea of field–level conceptions, it provided a starting point

for my proposed work.

In this chapter, I have reviewed research related to conceptions, both in education

in general as well as within CS specifically. This research is what underlies my

argument that a cognitive view of field–level conceptions is a fruitful perspective.

In the next chapter, I will focus on method: both the research that underlies the

method I chose and design of two studies to elicit student conceptions of CS.

52

CHAPTER III

STUDY DESIGN

In the previous chapters, I have argued that CS educators have a limited idea of what

conceptions students have about the field of CS. My research attempts to advance

this understanding by answering three research questions in two studies:

RQ1: What types of CS field conceptions exist in CS undergraduate stu-

dents?[Study 1]

RQ2: Do potentially problematic CS conceptions affect student educational

decisions?[Study 1]

RQ3: What is the prevalence of different kinds of conceptions among the CS

major population?[Study 2]

Both studies focus on the understanding of undergraduate CS majors. Undergrad-

uate CS majors were chosen because significant research has already been conducted

on the views of high school students (e.g. [81, 36]). By looking at undergraduate

students, I was able to find educational implications for the retention and success of

students that already have some interest and familiarity with Computer Science.

The first study was an open–ended qualitative study designed to understand what

conceptions exist and how they affect student educational decisions. The primary

data for this study came from interviews with undergraduate CS majors. The student

interviews were supplemented with written sources of information about CS as well

as interviews with student advisors. The data sources were analyzed using grounded

theory methods with the goal of producing an accurate understanding of the different

CS conceptions students have.

53

As the theory of student CS conceptions was developed, I began to try assessing

student conceptions on a larger scale using something like a survey. As part of

the first study, I started to develop a open–ended survey instrument. As the study

progressed, I changed the survey with the developing theory and tested how various

survey methods elicited responses.

The second study is a larger study of students in one undergraduate CS class. I

finished developing the survey instrument from Study 1 to assess conceptions across

a large groups of students. The results were evaluated based on the theory built

from the interviews. The goal of this study was to determine how common different

conceptions of students are, for several groups of students.

3.1 Study 1: Method

This section focuses on the procedures for Study 1, which used interviews to study

student conceptions of Computer Science. As part of this study, thirty three students

and four counselors were interviewed and surveyed about their views of Computer

Science. The various sources of data are discussed, including details of participants

and recruitment. The section also includes details of the interview process, both at

the beginning and end of the study. Appendix A contains the initial interview guide

and initial survey (both of were changed as the study progressed).

The study was designed to follow the grounded theory qualitative methodology,

but this section focuses on the procedure and not the reasons why. In the next section,

the justification for grounded theory is discussed in detail. Details of the analysis are

also presented in that section.

3.1.1 Data Sources

In accordance with grounded theory [18], this study analyzed several different data

sources in its analysis of student conceptions of CS.

54

3.1.1.1 Written Materials.

I looked at several written sources as possible influences on student conceptions of

CS. I did not explicitly analyze these sources using grounded theory analysis. I

familiarized myself with them in order to understand student discussion:

1. Departmental materials: This category includes the departmental website, pro-

motional materials, and the description of the major in the course catalog.

2. Major courses and requirements: The relationship between courses and other

curriculum features and CS is both explicit and implied. The course catalog has

explicit descriptions of courses and why they are important. But students are

also likely to infer what is important in the field by looking at curriculum re-

quirements including non–major courses or departmental application processes

[75].

The websites and course catalogs I examined were the ones from the three schools

where I conducted interviews: Georgia Tech, Duke University, and Spelman College.

3.1.1.2 Interviews with CS Counselors.

People in the CS department who advise students have some understanding of com-

mon CS conceptions students have and how those conceptions influence student ed-

ucational decisions. At Georgia Tech, students must speak to a counselor before

switching majors from CS, so the counselors were likely to have experience with con-

ceptions that cause educational problems. I interviewed four Georgia Tech counselors

to understand what conceptions counselors notice in students and what sort of ques-

tions students ask.

In my interviews, counselors did not have their own theories about how student

conceptions of CS change. They did not have formal CS training and were hesitant

to make generalizations about CS. However, they did have experience with students’

55

educational decision making process. I found my discussion with counselors to be very

valuable in terms of anticipating the interesting student decision making behavior that

I found in the interviews.

3.1.1.3 Interviews with Students

I interviewed thirty three students about their conceptions of CS and how those

conceptions have changed over time (see Table 2 for an overview). I interviewed

students at three schools: Georgia Tech, Duke University, and Spelman College.

Spelman is a historically black college for women, and as such is demographically

different from Georgia Tech on a variety of dimensions. Duke is demographically

similar to Geogia Tech, but is not an engineering focused school. All schools are four

year programs with curricula in alignment with the standard [10].

Recruitment was done through presentations in CS classes. Students were asked

to volunteer and offered a gift certificate to compensate them for participating. The

students’ contact information would be recorded and demographic information was

collected. I also obtained permission from students to get course grade information

(only for Georgia Tech students, due the difficulty of getting review board approval

for grade information).

3.1.1.4 Sampling

The grounded theory approach includes the process of theoretical sampling [11]. The-

oretical sampling rests on the idea that a researcher in a qualitative study does not

initially know what factors will turn out to be important. Therefore the researcher

cannot plan in advance how the population ought to be sampled. The researcher

selects a small initial starting population to interview and plans to select further can-

didates as the theory is developed. Thus later interviews are chosen on the basis of

the theory (which is why it is called ‘theoretical’ sampling). I used theoretical sam-

pling in Study 1 as much as possible, although some factors had to be planned for in

56

Table 2: Summary of interviews. Id numbers are used to identify individual quotes.
Id Year Conception School
P4 after-undergrad theory Georgia Tech
P5 counselor Georgia Tech
P6 counselor Georgia Tech
P7 counselor Georgia Tech
P8 after-undergrad broad Georgia Tech
P9 senior theory (maybe) Georgia Tech
P10 after-undergrad theory Georgia Tech
P11 sophomore programming-centric Georgia Tech
P12 sophomore theory Georgia Tech
P13 sophomore broad Georgia Tech
P14 sophomore programming-centric Georgia Tech
P15 counselor Georgia Tech
P16 sophomore programming-centric Georgia Tech
P17 senior programming-centric Georgia Tech
P18 junior theory Georgia Tech
P19 senior broad Georgia Tech
P20 junior programming-centric Georgia Tech
P21 sophomore just-programming Georgia Tech
P22 junior broad Georgia Tech
P23 sophomore programming-centric Georgia Tech
P24 junior theory Georgia Tech
P25 junior unknown Georgia Tech
P26 senior broad Georgia Tech
P27 freshman programming-centric Georgia Tech
P28 freshman programming-centric Duke
P29 freshman broad Spelman
P30 senior broad Spelman
P31 freshman broad Spelman
P32 sophomore broad Spelman
P33 freshman programming-centric Spelman
P34 senior programming-centric Spelman
P35 sophomore programming-centric Spelman
P36 junior theory Duke
P37 junior programming-centric Duke
P39 junior theory Duke
P40 junior broad Duke
P41 junior theory Duke

57

advance. I discuss the factors that turned out to be useful in selecting candidates in

Section 3.2.1.2.

There were three categories of variation I had to plan for in advance because of

logistical difficulties and IRB requirements:

1. Time in Major. One of the main hypotheses of this research is that conceptions

change over time. I interviewed students at all four years of their CS degree.

2. School. Because the populations schools draw from is different, and because

curricula does vary between schools, I interviewed students from three different

schools: Georgia Tech, Duke University, Spelman College.

3. Level of Academic Success. Because one of the goals of this study was to connect

conceptions with academic success, and because there is reason to think that

level of academic success might affect conceptions, I interviewed to look at stu-

dents with varying levels of success in their classes. I used instructor–evaluated

student performance in class as a proxy for overall academic success because of

the difficultly of working with long–term student data like transcripts. I divided

students into very approximate top-3rd, middle-3rd, and bottom-3rd, and then

attempted to select students for interviews with different groups represented.

Grade information was only provided for Georgia Tech students.

We also recruited students with a questionnaire that asked about race, gender,

and other data we felt might be useful in selecting participants based on the emerging

theory.

I made a special effort to recruit students from traditionally underrepresented

groups in CS. Selecting students from underrepresented groups was difficult because,

in general, these students were less likely to volunteer after class presentations. Still,

by interviewing almost all underrepresented students who volunteered and selecting

58

Spelman College as one of the schools in the study, students from traditionally un-

derrepresented groups made up more than a third of my student interviews.

3.1.1.5 Preliminary Survey Instrument

Students were asked, as part of the interview process, to fill out a preliminary version

of the survey instrument being developed for the second study. The survey provided

an opportunity to validate that a conception elicited during interviews was consistent

with the responses to the survey. It also provided an opportunity to test potential

survey questions for Study 2 and see responses.

An important question is whether the survey should be administered before or

after the interviews with students. When I begin interviewing students, the survey

was to be administered after the interview process: this provides the least risk of

specific questions on the survey guiding student thinking and corrupting the open–

ended interview responses. As I felt confident that the survey was not biasing student

responses, I began administering the survey before the interviews. That let me test

that the survey questions are understandable on their own without the interviewer.

In both cases, I had the participants think aloud as they fill out the survey to ensure

that the questions were being interpreted as intended.

3.1.2 Interview Method

At a high level, the goals of the student interviews were:

1. Determine a students conception of CS, how the student came to the conception,

and if the conception is potentially problematic or productive.

2. Determine if a student feels their conception has changed, and if so how and

why.

3. Determine how a student conception is influencing educational choices, and

(if the student’s conception has changed) how previous conceptions influenced

59

educational decisions.

Interviews generally took between forty–five minutes and one hour. The initial

interview guide for the interviews can be seen in the appendix. Initially, the interviews

tended to follow a question and answer format similar to those given in the guide.

With greater experience, the interviews tended to follow more naturally by asking the

student questions about their time in the CS major. I would ask the student how they

ended up initially majoring in CS and ask them to make a timeline of the courses they

had taken. At that point, the student would tend to volunteer information about the

courses, which would tend to lead into a discussion of good verses bad courses and

educational decisions the student made. The student would usually bring up long

term goals and I would pursue that line of questioning.

If the field of CS did not come up during that process, I would bring it up explicitly

and briefly ask about definitions (asking students to explicitly define CS, it turned

out, was not usually productive). To test the boundaries of a students understanding,

I might ask the student:

1. Whether they considered a particular course they mentioned was completely

CS, or a mix of CS and some other field

2. For an example of a “really Computer Sciencey” job

3. If they considered someone doing a particular job to be “doing Computer Sci-

ence”

To test for potentially problematic conceptions, I would ask students to talk about

the content of courses they were looking forward to taking or had taken. I would also

ask about how students selected particular courses, or what they were looking forward

to learning before graduation. For students with concreate ideas about future courses,

this could naturally move into a discussion of the subdisciplines of CS. I would also

60

ask them if their view of CS had changed and if they recalled any problems with their

previous understanding (that line of questions, in contrast to asking about definitions,

could prove quite fruitful).

Overall, I found that allowing students to tell their own stories about their ex-

periences in CS could allow me to elicit a good understanding of their conceptions

without leading questioning.

Interviews for CS counselors tended to focus more on their experiences couneling

and questions students usually ask (beyond those about graduation requirements).

Beyond that, the interview focused on eliciting counselors’ theories on students’ con-

ceptions: what conceptions counselors think are common in students, how counselors

think student conceptions develop, and how counselors think conceptions affect stu-

dent education decisions.

3.1.2.1 Checks to Ensure Validity

When attempting to understand student conceptions, there is a risk of misinterpreta-

tion and bias. This is a common problem in qualitative research; even when partici-

pants and researchers act in good faith, it is difficult to understand when backgrounds

and assumptions are different. There are a variety of techniques to mitigate this risk

[53]. I used two: triangulation from multiple data sources and member checking.

The survey instrument allowed me to use triangulation: comparing data from

two similar sources to verify that interpretations of one source are consistent with

the other. Given that the eventual final interview process involved fairly open ended

questions, the risk of leading is reduced. The survey further reduced the risk by asking

similar questions to the interview process, but avoiding accidental leading that may

occur with expressions and other accidental social cues. But unfortunately, most of

the disparities between surveys and interview responses were caused by vague student

answers that couldn’t be followed up in the survey.

61

With three students, I also used member checking: providing the student with

my analysis of their conception, and asking for feedback. In one case, I contacted

research participant after the initial interview and reinterviewed them with the my

interpretation of their viewpoint. In two others, I presented my analysis after the

regular interview process concluded. With member checking, one needs to be aware

that participants may be likely to agree with researchers, and therefore not simply

take bland agreement at face value ([11], pg. 111).

Both types of checking helped, but there were problems. The survey data some-

times confirmed the analysis but often there was little in the results that could be

used. For much of the interview process, the survey lagged behind the theory because

it is much easier to elicit conceptions in interviews than via a survey. For the member

checked students, they all confirmed my analysis but I found it difficult to distinguish

“bland agreement” from genuine agreement, especially about a topic like CS where

students do not have well thought out opinions.

3.1.3 Summary

This section has introduced the procedures for Study 1. It was an interview–based

study of 33 CS students from 3 different CS programs. The interview was semi–

structured with a focus on understanding students conceptions of computer science,

how students make educational decisions, and how student conceptions have changed.

In the next section, I discuss the justification for the design and the process of analysis.

3.2 Study 1: Study Design and Analysis

This section describes how grounded theory informed the design for Study 1 and

how it was used in the analysis of data. I highlight two main differences between

a grounded theory approach and other interview based qualitative approaches and

describe how they played out in the study. Then I describe the process of grounded

theory analysis and how I used it to develop my theory.

62

3.2.1 Grounded Theory in Study Design

I argue in Chapter 2 that because CS educators do not have experience eliciting

student conceptions, a qualitative approach is necessary. Many different qualitative

approaches have been used in education [72]. Some qualitative approaches are not

suitable for interviewing a variety of students about CS (e.g. ethnographic observation

or case studies). I believe interviews are the easiest and best ways to understand how

students conceptualize CS. However within the framework of student interviews, there

are still several potential approaches.

Grounded theory had two main advantages for this study. First, grounded the-

ory emphasizes developing a theory grounded in the participants and not testing a

preconceived structure. Second, the process of theoretical sampling in which new

participants are selected based on the emerging theory. I discuss both in the sections

below.

3.2.1.1 Emphasis on Developing a Theory Grounded in the Participants

One of differences between grounded theory and other approaches is its requirement

that the theory emerge from the participants. The researcher is encouraged to come

to the interviews (to the extent possible) as if they had no preconceptions about the

topic and focus on how the participants reason. Though (as discussed in Chapter 2)

the CS education community does have some ideas about likely conceptions, there

was also a high likelihood that the way students thinking about CS would be different

from what was expected. Grounded theory gives the researcher the freedom to pursue

what concepts naturally arise; to understand students conceptions of CS we need to

be prepared to approach the issue on the students’ terms.

In practice, the flexibility to base the emerging theory on the participants turned

out to be very important. There were terminology differences between students and

what experts might say. For example, ‘theory’ as used by students tended to refer to

63

any mathematical aspect of any CS course, not a discrete subdiscipline within CS.

There was also focus differences – a large part of the theory developed to describe

student educational decisions came from student discussions of classes being fun on

enjoyable: things that did not form a large part of our framework as we begun.

Grounded theory is also focused on developing a ‘theory’ from the participants.

As you read the later sections, it should be clear that the results are intended to be

more than simply a description of what students know and do. The theory attempts

to explain why students act the way they do (e.g. why they choose their courses in

a seemingly arbitrary way). Like any scientific theory, there is a possibility that it

might not be true (or that it might not be true at different schools, or for different

students). The goal of the process is to ensure that the theory is as likely as possible by

‘grounding’ it in the qualitative data. The fact that grounded theory encourages the

research to attempt to develop these theories and explanations makes it an excellent

process for understanding student conceptions.

3.2.1.2 Theoretical Sampling

Theoretical sampling is the process of selecting later study participants based on the

evolving theory, and it is an important part of the grounded theory method. It was

useful to have the ability to select participants as the theory developed. The purpose

of sampling was not to interview a statistically representative group of students, but

to interview students from a wide variety of backgrounds and develop the theory.

In accordance with theoretical sampling, I did not initially plan exactly how many

students I would interview or what groups each individual person will be drawn from.

The interview process continued until new interviews did not add new concepts (see

the discussion of saturation below).

Selecting which courses to recruit in very much followed from the developing

theory. I selected an introductory course for my initial interviews because it occurred

64

at a point when students had to make decisions about upcoming courses. From there,

I selected courses based on the theory. For example, because students intending to

pursue the People thread often had different conceptions of CS, I selected a course

in the People thread. Not all instructors were willing to spend class time for study

recruitment, but I was usually able to find a course that met my needs.

A variable that turned out to be interesting was a question I asked about long–

term career goals. Students did not usually have a very concrete idea, but even

their vague answers turned out to be varied and interesting. Students who selected

unusual career goals (e.g. becoming a CS teacher, working for the Navy) generally

had interesting forces behind those directions. The ability to theoretically sample

allowed me to select students based on responses like this, rather than selecting a

particular quota from a particular class for example.

Another set of variables that turned out to be valuable was underrepresented

groups — both women and underrepresented minorities. Students from underrepre-

sented groups often had less pre–college experience with CS and had more concerns

about CS and their place within it. Although this study cannot compare under-

represented groups because small sample sizes makes generalizations about groups

impossible, the interviews with these students shed a great deal of light on the stu-

dent decision making process.

Finally, theoretically sampling allowed me to avoid a group that might have

seemed initially interesting – freshman. Even sophomores were very vague about

CS and the educational decisions they might make. It quickly became clear when

interviewing freshman that they had not thought very much about CS beyond their

initial CS course. Sophomores and juniors were at the stage that they had to make

interesting decisions about their goals in CS. I would have preferred to get more

seniors – because I generally recruited in larger classes to get greater choice in my

participants, seniors (who are normally taking the final, smaller, courses in their

65

specializations) were rarer.

3.2.1.3 Reflections on the Study Design

Overall, I am definitely glad that I chose a qualitative approach for this study. Qual-

itative approaches are best when you want to pursue unanticipated questions. When

this study began, I did not have a clear idea of how categorize student conceptions of

Computer Science or how students used those conceptions in their reasoning. If I had

attempted to use a formal survey or explicit experiment without that understanding,

I would have almost certainly have asked the wrong questions. Even with a qualita-

tive approach, it took many interviews until the theory began to approach saturation

and my questions began to focus on issues that really mattered to students.

As far as grounded theory in particular, I was pleased with how grounded theory

encouraged me to approach the interviews without a particular conception in mind.

The explicit goal of grounded theory, to develop a theory, also encouraged me to

analyze deeper. Even when doing something as simple as selecting the next interview

candidate, the process makes clear the expectation that a theory should be developing.

3.2.2 Analysis

For the more structured aspects of the interviews, analysis was straightforward. De-

termining if a student could correctly reflect on the content of their courses or antic-

ipate the content of future courses was simply a matter of asking the right questions

and pursing ambiguous answers. Although I often had to approach the same question

from several different directions, usually by the end I was confidently about a students

ability to reason about the curriculum.

The goal of the grounded theory analysis was to understand the common threads

that underlie different student conceptions. Each conception arises from a student’s

unique experience. The goal of the analysis is to develop a theory, grounded in each

student’s individual experiences, that describes how conceptions develop, change, and

66

influence educational choices.

A grounded theory is based off careful line–by–line analysis of data sources that

are methodically abstracted into categories and theories. In this case, the primary

sources were transcripts of interviews. First the researcher develops initial codes that

describe what is being expressed in each line of the data [11]. Second, the researcher

goes back through the body of research accumulated and selects ‘focused’ codes that

explain larger segments of the data. Third, the focused codes are abstracted into

categories in a tentative theory that is then checked against other parts of the data

to test its explanatory power. There are several techniques to help the researcher

attempt to develop the categories in this larger theory including axial coding [18],

theoretical coding [11], and situational maps [13]. Tentative theories and ideas are

written in memos. The interview/analysis process continues until “saturation”: when

additional interviews do not further elaborate the theory.

There are several different variations of the grounded theory process [11]. My

processes was heavily influenced by Charmaz’s approach [11], as opposed to Corbin

and Strauss [18]. The approaches are similar in the initial stages, but Charmaz

suggests a variety of alternatives for the later analysis process. In Corbin and Strauss,

the final result of a theory is always a single category that subsumes all others that

represents the main theme of the research [18, p. 266]. In Charmaz’s approach [11, p.

115-121], a single category is not the final goal — instead the researcher attempts to

integrate the categories into a cohesive theory but a single category is not necessarily

the only result.

To illustrate the analysis process, the following sections will provide a few examples

of the process.

67

3.2.2.1 Turning Transcripts Into Codes and Focused Codes

“Software engineering, it looked like it was more offered by lower tier col-

leges. . . I figured, even though I don’t really like theory, there’s probably

some stuff in it that’s useful and probably would make me a better pro-

grammer overall. So I figured I’ll stick with Computer Science but try to

take more practical side of classes.”

—P12

One of the things I coded about this quote was the student’s decision to rely on

the reputation of the CS curriculum, despite negative experiences with CS theory in

high school. The initial coding was abstracted into the focused code “trust in the

curriculum,” which included several other students who specifically mentioned they

chose particular specializations because the specializations were considered “tradi-

tional” CS. When comparing student responses, I saw similar but different responses:

students who argued that specializations were unimportant because they knew the

curriculum would cover any really essential CS topics. I created a superordinate code

about how students assume the CS curriculum will teach them everything they need

to know, even when they often don’t know what they really want from CS. Eventually,

this code became called “abdicating responsibility to the curriculum.”

3.2.2.2 Revising the Theory

Throughout the grounded theory process, there are tentative theories. These theo-

ries are being put to the test in later interviews, and during analysis processes like

situational analysis (see the next section). Usually, initial generalizations turn out to

not to universally true. Contradictions triggered me to go back to the source data

and to become more nuanced which moves the grounded theory forward.

For example, at one point in the analysis, the idea that enjoying classes was the

68

main determinant for student educational decisions was a major part of the tenta-

tive theory. There were a variety of codes having to do with student enjoyment like

“frustration causing reconsideration”, “enjoying classes involved in educational deci-

sions”, and “just choosing what sounds ‘interesting’ ”. But, by looking at the counts

of each code, other codes like “parental involvement” were almost as common. That

seemed wrong insofar as enjoyment seemed to figure greatly into student decisions,

but parental involvement definitely seemed more peripheral. It was clear that some-

thing about student enjoyment was being missed, so I went back through the codes

and attempted to understand the role of enjoyment more clearly.

“I got [to my architecture course] and I was like, ‘I don’t understand any

of this. I don’t really like it.’ So I switched to [the people specialization]

which I like a lot more. I have a lot of interest in psychology. I’m actually

getting a certificate in social and personality psychology . So I switched.

And I was kind of hesitant at first when I talked to my — the advisor in

the CS department, because I was like, ‘This - that really isn’t as good for

a career in video game animation and special effects or whatever I decided

to go into.’ She was like, ‘It’s not.’ ”

—P19

Quotes like the one above made me realize that there were different kinds of

enjoyment experiences. Weaker positive experiences encourage students to explore.

But when a student has a very negative experience in a course, it often triggered

them to make an educational decision. Then when they’re making that decision, they

solicit advice from parents or advisers (as in the quote above). But the experience

triggering the sudden reorinetation is the emotional experience of enjoyment, which is

why enjoyment seemed abstractly to be more important than, for example, parental

advice. This idea eventually was revised even further into the overall idea of student

69

educational decisions that is discussed in Chapter 5.

3.2.2.3 Situational Maps

One technique I made use of to develop the grounded theory was situational maps as

described by Clarke [13]. The process of coding produces a huge number of codes: it

is difficult at times even to keep track of them. In the mapping process, I would have

several diagrams containing the main elements of the evolving theory, and place the

main codes on the map and try to begin relating the various parts of the map. Related

codes are often organized near each other. Codes that have important relationships

in the evolving theory are linked by lines and arrows.

The map itself tends to encourage ‘cleaning’ of the codes: although the maps are

large (often bigger than a single computer screen) there is a limit to how many codes

can be displayed. Similar codes are combined, often making better more general

codes. Parts of the emerging theory that seem to be contradictory are made more

obvious (e.g. students taking courses they expect to dislike, in contrast to most of

their peers).

Figure 2: A sample situational map. Not every code represented on this map was
equally common or important — only some are discussed in the final theory.

70

You can see an example part of the situational map that focused on student

educational decisions in Figure 2. I used this map to refine my own theory of student

educational decisions and organize my codes — it is not a diagram intended to be

useful to others. Some of the codes represented here did not become a key part

of the final theory (for example, ‘avoiding too much schoolwork’ which is an obvious

driver of student educational decisions but was only occasionally important in student

reasoning).

3.2.2.4 Analysis of the Preliminary Survey Instrument

The primary goal of the preliminary survey instrument was to test ideas for a survey

to elicit conceptions that can be used at a larger scale than individual interviews.

As the grounded theory develops and common conceptions of CS were identified, the

survey was modified to incorporate questions that work well to elicit key differences

in student conceptions. Over time, the survey moved from attempting to identify

specific problematic conceptions about future or past courses towards determining

which of the 3 conceptions discussed in Chapter 4 students had.

One of the components of the initial survey instrument was the use of a Com-

puter Science concept map. This is based on the research by Novak and Gowin [61],

that identifies a concept map as an excellent way to both allows students freedom

in expressing complicated conceptions but also produces an artifact that is easy to

evaluate for conceptual flaws. Concept maps worked well for me in my interviews

with high school students (described in Chapter 2).

In my college level interviews, the concept map occasionally worked very well but

also had its problems. Very often students near the beginning of CS could not make

a concept map at all. Students at all levels did not like filling out the concept map,

which suggested it might not work for a large scale survey. It is one thing when

an interviewer is right there watching, but students might be tempted to avoid the

71

difficult mental work required to build a concept map on a large scale survey. Students

also interpreted the concept map instructions slightly differently, so comparison could

not always be made between maps. The concept map was an interesting exercise that

occasionally produced very interesting results, but it was not a good candidate for

the final survey.

Another question type that had mixed utility was open ended 1-3 sentence re-

sponse questions. Questions of this sort included “How would you define Computer

Science” or “Can you think of a concrete thing you have learned (or will learn) in your

Computer Architecture course that you think will be useful even if you don’t ever

design a piece of hardware?” In all of these questions, students would occasionally

respond in a detailed way that provided a good view of their conception of CS. But

many times, students would answer in a way that was impossible to interpret.

By the end of Study 1, very few questions had been identified that would reliably

elicit student conceptions. Part of the problem may have been that, towards the end

of the study as the overall theory approached saturation, not enough focus was placed

on the revising the survey in innovative ways. Therefore, for Study 2 it was decided

to take a new approach to the survey and add on a thinkaloud portion to validate

the approach.

3.2.2.5 Reflections on Analysis

The basic process of my grounded theory analysis was:

1. Go through the written interview transcript, coding line–by–line and developing

new codes as necessary

2. When similarities are seen across interviews, combine similar codes to broader

focused codes

3. Based on the codes, the interviews themselves, or techniques like the situational

maps, refine the codes into a tentative theory about what is happening

72

4. Review the data based on the tentative theory (and do more interviews, chosen

with theoretical sampling) as contradictions and nuances are found revise the

tentative theory

5. When new interviews do not produce changes to the theory, it is considered

saturated and can be presented

Overall the grounded theory process was excellent in producing a theory of stu-

dent conceptions of CS and educational decisions. What problems occurred tended to

be from modifications to the process (e.g. the thinkaloud survey which was less suc-

cessful) or logistical constraints (e.g. sometimes it was necessary to schedule student

interviews so closely it was not feasible to analyze them before the next interview).

Although the resultant theories developed were different than I anticipated, I believe

they are well grounded in students’ reasoning processes.

3.2.3 Differences From Proposal

There are two main differences between the Study 1 presented here and the one I

proposed:

1. Less Focus on Textual Data. The original proposed study planned to analyze

introductory textbooks and college websites using a grounded theory approach.

Although CS department curricula were examined to supplement interviews,

there was no formal grounded theory analysis done. Given students’ discus-

sions I suspect that introductory textbooks would not have been a useful source

for theory. Students did, however, use department websites and curricula ex-

tensively. A further study that analyzed these sources in detail and also allowed

students to reason about CS with the departmental resources available to them

would be an interesting supplement to the work presented here.

73

2. Significantly Expanded Interviews. The original proposed study estimated ap-

proximately 25 interviews at two schools. Study 1 consisted of 37 interviews

(33 students, 4 counselors) at three schools. Duke University (the school that

was added beyond the proposal) is interesting because although it is similar to

Georgia Tech in terms of admissions requirements, in terms of curriculum it of-

fers students many fewer options. Overall, I believe the extra interviews helped

to get a better theory that is applicable to a broader group of CS students.

3.3 Study 2: Assessing Prevalence of CS Conceptions

In Study 2, the survey instrument, based on the theory developed in Study 1, was

given to students. The goal of this study is to determine if it is possible to assess

student conceptions with a simple survey and how common the conceptions elicited

in the first study are. The survey instrument used in this study was tested using

a thinkaloud protocol to ensure that the questions accurately elicit student concep-

tions. This study estimates how frequently each of the Study 1 conceptions occur and

therefore how much instructors can expect students with different conceptions to be

in their classes.

3.3.1 Design of the Survey Instrument

The main portion of the survey instrument was based on questions that proved fruit-

ful in interviews: “Would you call a person who does [some activity] a Computer

Scientist?” Students who viewed CS in a theoretical mathematical way would find

researchers who proved characteristics of algorithms to be very good examples of Com-

puter Scientists. Students who viewed CS as primarily about programming would see

such researchers as on the border between CS and some other field. In the survey,

students are given a list of activities and asked to rank how Computer Scientist–like

they are on a scale from “Not Computer Science At All” to “A great example of

someone who does Computer Science”. The main page of the survey can be see in

74

Figure 3.

The survey also asks some questions that can be answered with a few sentences.

The survey also explicitly asks students to rate their agreement with descriptions of

the three main conceptions identified in Chapter 4. You can see the complete (post

thinkaloud) survey instrument (including demographic questions) in the appendix.

Although open–ended questions have sometimes worked poorly in the past, they do

provide an opportunity for students to provide more information about their con-

ceptions which I can hopefully use to understand their conception if the first section

produces inconsistent results.

3.3.2 Thinkaloud

To test the survey instrument, I recruited six Computer Science students through pre-

sentations in two different CS class. The students filled out the survey and thought

aloud while I took notes on questions they had problems with or interpreted differ-

ently. Then, after the survey, I did shorter 30–minute interview on their views about

Computer Science. After I determined my interpretation of the students view, I also

told them my analysis and asked them to elaborate on anything that was wrong or

that I left out.

For students who had a programming–centric conception of CS, the survey accu-

rately measured their CS views. For students who had a more broad conception of

CS, there were some problems. The broad view is the most difficult to assess because

although most individuals with a broad view assert there are non–programming and

non–theory areas of CS, each person tends to be a little different about what those

areas are. I revised the survey to try and more accurately elicit the broad view.

None of my thinkaloud participants had the theory view, but an informal test with a

graduate student did assess the theory view correctly.

75

This questionnaire is about your view of the field of Computer Science. There are no right answers to these

questions. Don't worry if you don't have a definition of what "the field of Computer Science" is.

Please rank how much each of these people could be considered a "Computer Scientist" and how much what they

do could be considered "Computer Science" using the following scale:

1 - Not Computer Science At All

2 - Similar to/Useful to Computer Science, but isn't really Computer Science

3 - A Mix of Computer Science and Some Other Field

4 - Doing Computer Science, but maybe not the best example

5 - A great example of someone who does Computer Science (e.g. an example you might use yourself if you were

explaining Computer Science to a friend)

Please circle the number that corresponds to your selection.

A chip designer who works for Intel and designs new computer
processors

1 2 3 4 5

A graphic artist who makes 3D special effects for movies using existing
3D graphics programs and occasionally programming small scripts

1 2 3 4 5

A researcher who studies how the elderly use social networking apps
like Facebook and Google+

1 2 3 4 5

A programmer who works for Microsoft on the next version of
Microsoft Powerpoint

1 2 3 4 5

A designer who makes a really easy to use user interface for a new
app, but doesn't program it themselves

1 2 3 4 5

Someone who fixes broken computers (e.g. replaces hard drives,
reinstalls operating systems)

1 2 3 4 5

A programmer who works for a bank and codes algorithms to predict
insurance rates

1 2 3 4 5

A researcher who devises new algorithms for encrypting data

1 2 3 4 5

A researcher who writes programs to analyze network traffic and
detect new kinds of computer viruses

1 2 3 4 5

A programmer who knows a lot of obscure features of the C++
programming language

1 2 3 4 5

A researcher who writes a mathematical proof that one algorithm is
more efficient than another

1 2 3 4 5

A programmer who writes really easy to read reusable code

1 2 3 4 5

A manager of a large software project that doesn't do coding
themselves, but understands a lot of the technical details

1 2 3 4 5

A network administrator at a company that configures security
software to protect against hacking

1 2 3 4 5

Figure 3: Main page of the survey for Study 2

76

3.3.3 Participants

Participants were students in a large size sophomore software engineering class. Of

approximately 175 students in the class 103 agreed to participate in the study. Stu-

dents were not compensated for participating in the study.

3.3.4 Analysis

The primary analysis was to determine student conceptions of CS, based on their

survey responses. Students were assigned to a single conception based on their answers

to the first questions, or as “uncategorized” if their answers and inconsistent with

any single conception. I also went through the open ended questions and assigned

students to groups based on that. The study also looked at the relationship between

some other factors (race, gender, previous CS classes) and student conception.

A detailed discussion of the results and the statistical analysis performed on them

is in Chapter 6.

3.3.5 Differences From Proposal

There are three main differences between the Study 2 presented here and the one I

proposed:

1. Slightly different source population. I proposed to give the survey to 2 classes,

each with 50-60 students. Instead, I gave the study to one class with 150

students.

2. No compensation. I proposed to give the students extra credit for participating

in the study. The survey was shorter and more straightforward than I antic-

ipated, and compensation causes complication, so I decided that extra credit

was not necessary to ensure students did a reasonable job.

77

3. Cohen’s κ . I anticipated that the survey would be primarily be open–ended

questions evaluated with a rubric. For that approach, having multiple re-

searchers and inter–rater reliability using Cohen’s κ was appropriate. Based

on Study 1, I decided that closed questions were actually better at eliciting

conceptions. For the small number of open–ended questions that occur on the

final survey, inter–rater reliability is not as important.

3.4 Summary

This chapter has outlined the method for two studies to understand student concep-

tions of CS. In order to know if student conceptions are important from an educational

perspective, we need to understand what conceptions exist, if and or how they affect

student educational decisions, and how prevalent these conceptions are in students.

Study 1 focused on what student conceptions exist and how they affect student

educational decisions. Grounded theory was selected as the method because of its

flexibility to explore unanticipated results and focus on developing a theory true to

the understanding of participants. Interviews with student advisors, and interviews

with students provided the data for the study. Theoretical sampling was used to

determine who to interview as the theory develops. As part of the process, a survey

instrument was tested to elicit conceptions of CS in a similar way to interviews.

Study 2 used questions similar to Study 1 to attempt to understand how prevalent

different student conceptions of CS are. One CS class filled out the survey. The

prevalence of the various conceptions observed in the classes give an approximate

idea about the extent to which various conceptions of CS exist in the population.

This chapter outlined the design of two studies to address the research questions

put forward in Chapter 1. Detailed examples of the materials for Study 1 can be

found in Appendix A. The survey used in Study 2 can be found in Appendix B.

The next three chapters discuss the results of the studies. Chapters 4 and 5 discuss

78

the results of Study 1 (student conceptions of CS and student educational decisions

respectively). Chapter 6 discusses the results of Study 2.

79

CHAPTER IV

CS FIELD CONCEPTIONS IN CS UNDERGRADUATE

STUDENTS

This chapter presents the results of Study 1 as they relate to student conceptions of

the field of CS. The theory presented here is the result of a grounded theory analysis

of interviews with undergraduates in CS degree programs at three different schools.

There are three main conception categories of CS I observed in undergraduates with

more than a few courses of CS experience (sophomores and later):

1. Theory–View: CS as Mathematical Study of Algorithms. Students who held

this view thought of CS as a primarily theoretical and mathematical discipline.

The design of conceptually difficult algorithms was most central to CS, as were

other mathematical ideas like Big O and NP–Completeness. Programming was

viewed as useful but more peripheral to CS, and students often emphasized that

CS could exist without any physical computer.

2. Programming–View: CS as Programming–Centric but Including Supporting Sub-

fields. Students who held this view considered CS to be mainly about pro-

gramming, but emphasized that other subfields were also necessary to do good

programming. Writing programs to solve large and technically challenging prob-

lems was the central activity. Students with this view varied on how important

non–programming subfields of CS were.

3. Broad–View: CS as Having Many Different Subfields. Students who held this

view thought of CS as mix of many different computer–related subfields. Theory,

Robotics, Programming, and (often many) others are all equally important

80

parts of a broad CS ‘umbrella’. In this view, comparatively little knowledge

was considered ‘essential’ to a Computer Scientist; students emphasized the

differences between subfields and the freedom to pursue different paths.

Within each of these categories students had a range of views, encompassing both

students with correct and incorrect views about their CS courses. I asked two kinds

of questions — questions where students would “reflect” on courses they had already

taken, and questions where students would “anticipate” the content of courses they

had not yet taken. Recall from Chapter 2 that I judged a student’s reflections and

anticipations “correct” if the student identified content areas similar to what was ac-

tually in their school’s curriculum. In addition to the three main categories described

above, there was considerable variation between students about whether certain ac-

tivities (e.g. designing user interfaces, communication skills) were part of Computer

Science.

In this chapter, I will approach the issue of student conceptions of CS in four

ways:

1. I will describe the three main conceptions in detail, and compare and contrast

them.

2. I will discuss potentially problematic conceptions that exist within students of

all the main conceptions.

3. I will discuss how students reflected on the conceptions changing throughout

their undergraduate experience in CS.

4. I will address the question of whether curriculum has an effect on student con-

ceptions, and describe differences between the three schools in Study 1.

81

4.1 A Theory: Three Main Conceptions of the Field of CS

This section presents three categories of student conceptions of the field of Computer

Science. These categories of conceptions have some variation within them, and there

are even a few students who seem to straddle the boundaries between two categories.

However, it is reasonable to say that these three categories represent three distinct

views of CS that are useful when understanding student views of the field.

4.1.1 Theory–View: CS as Mathematical Study of Algorithms

“ . . . how to program is I think not completely different but is very dif-

ferent from Computer Science in general. Because theory definitely is

important - very, very important to Computer Science in sort of under-

standing the more theoretical aspects like what people are working on,

like what are the constraints, where are the known problems, that sort of

thing . . . So computer science, I feel like is much more actually theoretical

and programming is just another skill essentially.”

—P39

The theory–view of CS focuses on the theoretical and mathematical aspects of CS

as the most essential part of CS. ‘Theory’ as students used the word encompassed more

than just the contents of a theory course: it includes the abstract portion of most CS

courses (e.g. data structures, LL and LR grammars), but algorithms are frequently

mentioned as the central idea. In this view, programming is a useful offshoot of

the mathematics of CS, but it’s clear that it is an application and not the core.

Students with this conception would frequently emphasize that Computer Science

exists beyond actual physical computers: they were the only group to mention that

CS exists in puzzle games or algorithms humans execute in everyday life. Elsewhere

in this document, I refer to students with this conception as theory–view students.

82

For theory–view students, CS was an academic discipline. All of them agreed it

was possible to do programming without doing Computer Science. Some suggested

that probably every professional programmer encountered hard problems and there-

fore was doing CS, while for others the programmer had to be working on a hard

problem of theoretical interest (my term – students would likely say it was a problem

that hadn’t been solved before, or simply a problem that was really had to figure

out).

It’s important to note that this view of CS did not coincide with an interest in

doing theoretically–oriented CS work. All of them agreed that theoretical CS was

important to know, but none of these students were interested in pursuing theoretical

CS as a career. Just like students with other conceptions of CS, they expressed

frustration that proofs were difficult and not something they could see themselves

doing long–term.

This group tended to be accurate in anticipating the contents of later courses.

They varied in their relationship to pragmatic skills like knowing tools or specific

programming languages. Some viewed these skills as part of CS, but just a less–

central aspect of CS than theory. Others expressed that these skills were useful to

know but weren’t a part of Computer Science itself. They generally did not consider

user interface design or communication skills to be part of Computer Science.

4.1.2 Programming–View: CS as Programming–Centric but Including
Supporting Subfields

“I’d say that computer science is a study; is a discipline, and that pro-

gramming is how it takes form; how it’s actually represented in the world.

So I’d say programming is probably the end goal behind computer science,

but - I mean, it’s like comparing the study of automobiles to building a

car. Well, you can contribute to the study of automobiles without ever

actually building a car; many people do. But yes, we study it so we can

83

build them.”

—P27

In programming–view, programming is central activity of Computer Science but it

is supplemented by several subfields that do not directly involve programming. In this

case, programming encompasses topics like data structures and the implementation of

algorithms (for example, doing a project in a graphics class). But students acknowl-

edge that a computer scientist must understand ideas like Big O, incomputablity, the

structure of a processor, etc. However, the central activity of Computer Science is def-

initely programming: that is, someone proving something about an algorithm is doing

a less Computer Science oriented activity than implementing that same algorithm.

Elsewhere in this document, I refer to students with this view as programming–view

students.

Professonal programmers were seen as the exemplars of Computer Science in

programming–view; CS was not primarily an academic discipline. Unlike the theory–

view students, programming–view students did not emphasize that some program-

ming is not CS. Students in this group valued expertise with particular technologies

and often were interested in problems that had concrete technical aspects (e.g. an e–

commerce solution with a database). Theory–view and Programming–view students

agreed, however, that algorithms were extremely important and the ability to design

algorithms to solve difficult problems was an essential skill.

Programming–view students varied in how ‘supplemental’ the non–programming

subfields of Computer Science appeared to be. On one extreme, the non–programming

subfields of Computer Science are clearly fields in their own right with practitioners

(e.g. in the analogy quoted at the beginning of the section, the “many people” who

contribute without building a car). At the other extreme, there was definitely some

content that Computer Scientists needed to know beyond programming, but someone

who worked exclusively on the supplemental aspects was seen as on the edge of the

84

discipline (e.g. someone who works on proofs about programs might be more of a

mathematician than a Computer Scientist).

Programming–view students also varied on whether skills associated with the de-

velopment process, but not programming specific, ought to be considered Computer

Science. Communication skills and people management skills (especially on software

projects) were sometimes included as part of CS. User Interface Design was simi-

larly sometimes included and sometimes excluded. Often, technical expertise was

an important consideration: students would ask how much a manager on a develop-

ment project understood about databases, for example, in order to classify him as a

Computer Scientist or not.

Some students in this group exhibited potentially problematic conceptions about

CS. They readily agreed that non–programming aspects of their courses were useful to

them, but they often had difficulty articulating good reasons why. Programming–view

students argued that courses like discrete math were supposed to teach good mental

habits or logical thinking skills. When asked about computer architecture courses,

programming–view students could readily say that understanding the hardware could

promote efficient programs, but had much greater difficulty thinking of an example

why. They also frequently incorrectly anticipated the content of future courses.

4.1.3 Broad View: CS as Having Many Different Subfields

“I know you can work - you can basically almost work anywhere. You can

work for these corporate business, Microsoft, Google. You can work for

the government, CIA, FBI. You can work as a computer analysis; you can

work for the police department . . . You can build programs for them. You

could work in their database and organize their files. You could - what

else I used to do - you can analyze various things like for the CIA, FBI,

the government, you do various things with them.”

85

—P29

The third view of CS was as a very broad category that was interdisciplinary

and included many distinctive (and equally important) subfields. Students with this

viewpoint almost universally emphasized that Computer Science was much more than

just programming and that a degree in Computer Science had a wide variety of

applications. Elsewhere in this document, I refer to students with this view as broad–

view students.

Broad–view students struggled to articulate a division between using Computer

Science and simply using a computer. They often gave examples of how programming

could be used in interesting ways. They also often wanted to make clear that pro-

gramming was not the only possible thing Computer Science could provide but it was

difficult for them to come up with concrete examples. Occasionally students would

veer into potentially problematic conceptions by strongly emphasizing fields in CS

(like logic) that were not part of their school’s curriculum. However, it is important

to note that no one in this view subscribed to the simple notion that everything that

involves using computers involves Computer Science.

Broad–view students included researchers, professional programmers, and others

in their view of the field. “Researchers” in this case were generally academics working

on some specific application of Computer Science. Broad–view students often incor-

porated user interface design as part of CS. CS Theory tended to have a limited role

and on occasion was ignored entirely. Topics like data structures and algorithms were

considered important regardless of which area of CS one wished to pursue. Broad–

view students were also likely to mention ethics and communication skills as things

needed by all Computer Science majors.

Broad–view students often had goals outside of a traditional computer program-

mer role. They often described initially viewing Computer Science as about pro-

gramming, but then discovering a wider view. Not all had negative experiences with

86

programming, but that was common.

On occasion, broad–view students incorrectly identified the contents of future

courses (e.g. saying that Operating Systems was about Linux distributions). This

was more pronounced in areas they had less interest in, like operating systems and

architecture courses. Even though they generally brought up a greater variety of

subfields of computer science than other students (especially interdisciplinary ones),

they generally did not have detailed knowledge about them.

4.1.4 Commonalities Between The Three Main Viewpoints

Although the three viewpoints are different, there are a few key ideas that are common

to all conceptions. These ideas are worth highlighting because they are things an

educator can probably assume most of his students agree with (at least in courses for

sophomores or later):

1. Programming is an important skill. Students of all groups expected to do pro-

gramming in their courses. Even when they personally did not enjoy it, or when

they did not feel it was the “core” of Computer Science, they still considered it

a major part of a CS education.

2. Programming is not all of CS. Even programming–view students acknowledged

the importance of other skills. Although students sometimes misidentified the

purpose of learning specific non–programming skills, all seemed convinced that

other topics could be useful to them. This is not to say students agreed with

everything they were taught: students complained about useless content in

certain courses (more on this in the next chapter). All students were open to

the idea of learning new non–programming ideas.

3. Algorithms are essential to CS. Students in every category mentioned the ideas

of algorithms as essential to CS. For all groups, the idea of someone sitting down

87

and coming up with an algorithm to solve a challenging problem was maybe

the “most” CS–like activity possible. There are variations: theory–oriented

students would probably talk about understanding the mathematics to know it

will work, and programming–oriented students might describe the CS person

as “coding” the algorithm rather than designing it. All the groups agreed that

algorithms were a major part of what a CS major learns.

4. No detailed knowledge of subfields of CS. Undergraduates tended to reason

about CS in fairly broad strokes. Parts of CS that corresponded well with the

students’ outside knowledge might get mentioned (e.g. networking, databases,

and robotics for example) but other less obvious areas would tend to get lumped

together. For example, students would talk about the “low–level” parts of CS

which seemed to contain (approximately) architecture, operating systems, and

compliers (and sometimes building hardware). Even when students were pur-

suing a particular field in CS, they were just beginning to do research and did

not yet understand the different subfields of a larger area like graphics.

4.1.5 Discrepancies Between the Three Main Viewpoints

The three viewpoints disagree in many small ways. Oftentimes it comes down to a

matter of perspective: if you look at individuals in the workforce with CS degrees,

it’s easy to think of CS as the “the science of professional programming.” On the

other hand, if you look at the courses labeled CS in a average curriculum (especially

at smaller schools), the “mathematical study of algorithms” seems more appropriate.

But there are two areas worth looking at more closely:

1. Theory. Students were most different from each other on the issue of theory.

Even among students near graduation, students ranged from describing CS as

essentially all theory (“basically a field of applied mathematics”) to theory being

a small footnote about Big O notation and nothing else. This study did not

88

identify any clear causes for this large difference. But it’s clear instructors with

a particular view about theory are likely teaching at least a few students with

radically different views on the topic.

2. Solving Problems with Computers. Almost any student would be willing to

describe CS as a field about “solving problems with computers.” But this

statement covers up some key differences in the groups. Theory–view students,

it is most important that the problem be algorithmically interesting (and indeed,

they often used games or other idealized problems as examples). Programming–

view students would often discuss problems that were straightforward from an

algorithmic perspective but involved interesting technologies or limitations (e.g.

mobile apps). Broad–view students tended to think more about HCI issues and

reach beyond CS itself. Some problems meet all three criteria but many don’t;

it seems to be easy to reach a false consensus when each group interprets the

idea of “problem” using their own lens.

4.1.6 Students Attempting to Combine the Views

Most of the students interviewed fit fairly unambiguously into one viewpoint or an-

other. There are a few that lie on the border between one viewpoint and another.

Here’s a student who has reconciled The Theory View and the Programming View by

contrasting Computer Science (theory) with a field of “software engineering”. Note

that by the words “software enginneering” the student appeared to be thinking about

programming – not the academic subfield of CS called software engineering.

“In my view at least, they do a lot of research in sort of — well, they

spearhead a lot of those really cutting edge fields like [muffled] comput-

ing or sort of a security encryption, algorithms or like just algorithms in

general maybe with different applications and things like that. But for

me like computer science, like they’re much more sort of into the research

89

aspects and pushing the technologies on the theoretical fronts and sort of

the experimental stages.

Whereas I would call - I guess call myself a software engineer where I

use these technologies and I like to learn about these systems, these new

technologies being developed and learn how I can actually combine and

build a system that can support a service and application.”

—P39

Insofar as the term “computer science” is being applied to the theory side, one

might say this is a Theory View but the view seems more nuanced than that. An-

other student provided a view between the Theory View and the Broad View by

explaining that CS has a different character at different schools, some of which are

more theoretically oriented and some of which specialize in areas like programming

and entrepreneurship.

When talking to juniors and seniors, one definitely gets the view that students’

viewpoints about Computer Science are still evolving. This was borne out in the in-

terviews with graduated students; they usually discussed their view as continuing to

change past their graduation. The three viewpoints are attractive to students: they

provide a single coherent explanation and that makes students want to subscribe to

one or another. However even experts don’t agree on a simple definition of Computer

Science, (see Chapter 2) so any simple view is inevitably going to have some contra-

dictions. As students become more sophisticated, it is reasonable to expect them to

combine views and allow for differing opinions about CS. This process seems to be

just starting for most undergraduates; for most of the students in this study, a single

view provided a sufficient explanation of CS.

90

4.2 Potential Problems With the Three Main Conceptions

One of the goals of this research was to identify potentially problematic conceptions.

Potentially problematic conceptions are conceptions in conflict with the school’s cur-

riculum. Conceptions were evaluated in two main ways: students were asked to reflect

on what the important content of courses they had already taken were, and students

were asked to predict what the content of courses they would take might be. In

Chapter 1, I argued that students who don’t understand their curriculum have the

potential to make poor educational decisions.

Based on interviews, students’ conceptions were accurate at a high level. No stu-

dents considered CS to be about application use or as just IT work, for example. No

students felt that the content of CS was overall useless to them, and that they needed

to learn real skills independently. All the main conceptions are at least reasonable

views of CS.

But student views of CS also had some potential problems. These problems cut

across all the main conceptions, and occurred with students both early and late their

undergraduate careers. The main problems in student conceptions were:

1. Students knew few specifics about the contents of future courses.

2. Students did not often understand the role of theory in CS.

3. Students over-focused on programming languages rather than CS concepts.

4. Students often misinterpreted course content based on misleading names.

The following sections will example these potentially problematic conceptions in de-

tail.

4.2.1 Lack of Specifics About Future Courses

“Like I was signing up for fall classes. Okay, do I want to take processer

design or operating systems class? And, to be honest, that stuff looks

91

very similar to me from my shoes, right. I don’t know anything about

either one, so how am I supposed to distinguish them?

So is there anything I wish like I’d been told? Well, yeah. I wish people

would say like - I mean it’s sort of impossible to tell you about it until

you’re actually in it and doing it . . . they don’t sit you down and say, okay,

look at this screen of assembly code. That’s what you’re gonna do if you

go into platforms. Or look at this screen of Python code. That’s what

you’re gonna be doing if you’re in artificial intelligence, right?”

—P24

Almost anytime I asked students to speculate about the content of a future course,

students would explain they really did not know much about what the course entailed.

This was true of required courses, elective courses they were looking forward to taking,

or even courses they had signed up for in the next semester. It might not be fair to

call this a “potentially problematic conception” because students had such a explicit

assumption that entering a course with no concrete expectations was normal. That

does not always mean that students could not speculate correctly. When I asked

students to speculate and predict the content of their future courses, some of them

could do it with fair degree of accuracy. The main point is that students weren’t

familiar with the specifics of their future courses and didn’t normally think about

them. This is consistent with vague nature of main conceptions: students were not

aware of the subfields covered in their later courses, and so those subfields did not

form part of their descriptions of the field of CS.

This particular issue challenged some of assumptions which began this research.

Initially, questioning focused on cataloging concrete potentially problematic concep-

tions in specific areas (e.g. architecture, compilers, etc.). When it became clear that

undergraduates do not reason about CS that specifically, the focus of the interview

92

process changed away from detailed questions about particular areas.

4.2.2 Role of Theory

The place of theory in CS was definitely an area of student contention. For some

students, it was central part of Computer Science, while for others it seemed almost

a minor detail for analyzing an algorithm’s speed and a few other obscure details.

Even among theory–view students, oftentimes there was a feeling that large parts of

the theory they learned were not useful to their goals:

“Deterministic state machines are useful, finite automata. But like context-

free grammar and things like that, the professor thinks it’s important and

good to learn because by knowing the limitations of the language you’re

working with, you can know what you can do inside that language. So the

same thing applies for our compilers or our programming languages and

things like that. If you know what the limitations of your programming

language are, then that can help you better understand what you can do

with it, and I understand that. But in my opinion I can know how to

use Java without understanding all of the rules and conditions that would

apply behind the scenes to build the language.”

—P20

The quote above is not an example of a student with a potentially problematic

conception; this student could concretely articulate his instructor’s likely viewpoint.

I have included this quote to illustrate that not every student who wondered about

the usefulness of theory had a problematic conception. Oftentimes students with the

most detailed conceptions of CS wondered most about the contents of their classes.

Although there were some students with well–reasoned concerns about the con-

tents of their classes, there were also students whose understanding of theory could

be potentially problematic. It was common for students to overemphasize the coding

93

aspect of CS, especially when the theory was a mathematical idea they found difficult

to learn:

“’Cause when I was working on the project I didn’t have any idea what I

was doing for the calculus part until I took out one of my friend to just

like tell me, ”These are the formulas you need to do.” And then once I

knew all the formulas I could just code them - like it wasn’t a problem to

code them. It was just I didn’t know any of the formulas ’cause I don’t

really enjoy Calc 3 [for CS Majors]. So I feel like it’s - like it should be

subdivided.

Like math majors should be able to know all that stuff if they need to but

CS majors - that’s not their priority. We don’t need to know the calculus

part. Like we can, I guess, talk to other people that are specialized in

that. Like our specialty is creating code.”

—P23

Students also often explained that the purpose of techniques like induction and

other math were to teach them logical habits of mind, but that they had no direct

relevance to CS.

There were also students who’s conception of CS simply did not include any aspect

of theory or mathematical components of CS, even when pressed. This was especially

true of Spelman students. Here is an example of senior at Spelman answering a

question about the mathematical areas of Computer Science (after asking about the

theoretical areas of CS didn’t get much response):

“Programming. Programming I think is a lot of math, as well as when

you’re first starting off. When you’re learning binary, when you’re learning

about memory and RAM, and that type of thing. I think that is definitely

94

where the math comes in . . . If you’re trying to calculate something. If

you’re trying to build a program that is going to give you the sign, or

cosine or a tangent, or the sign or cosign of something anywhere, you

would definitely have to know what that is.”

—P30

This definitely seems to be something that the student has forgotten or not did

not understand, not simply an argument that theory was not useful. It’s clear from

the curriculum standards [10] that these topics were part of the student’s curriculum.

Students difficulty with recognizing theory as an aspect of CS is interesting, be-

cause almost all students included the idea of algorithms as some part of their def-

inition of CS. Algorithms can easily be seen as a very theoretical topic — involving

Big O or correctness proofs, for example. But it definitely seems possible for stu-

dents to view the idea of algorithms as central in CS, while leaving out or questioning

the mathematical analysis of algorithms. For all students, the idea of taking some

problem and devising a new algorithm to solve it was an important CS activity. But

for many students, devising a solution to an algorithmic problem was simply a skill

separate from formal mathematics.

To summarize, theory seemed to be a difficult area for students to incorporate into

their conceptions of CS. Some students mentioned it but did not really understand

its purpose, others omitted it entirely even when pressed. It seems to be a common

source of potentially problematic conceptions in CS.

4.2.3 Languages Rather than Concepts

“I’m not entirely sure [what is in the Information Internetworking Thread]

right now. I know I’m really interested in SQL because I’m making my

own website right now that’s based around like a database in SQL. And

it’s using like AJAX and JavaScript to pull in information and all that

95

stuff. So I’m really interested in that. I’m not really sure what else is like

entailed in the thread.”

—P23

Another common potentially problematic conception was students overemphasiz-

ing learning new programming languages as part of their CS curriculum, rather than

new concepts. Although there are plenty of (perhaps apocryphal) stories about stu-

dents complaining they want courses in particular programming languages, in my

interviews the reverse was more common. Students would take a course that had a

new language and think of it as a course to teach that particular language. This oc-

curred both when I asked students to speculate on the contents of their future courses

as well as when I ask students to reflect on courses they had already taken, but it did

occur less in reflection.

Languages are a very concrete thing for students, which I suspect provide an

easy way to conceptualize a course. Students are excited about something to look

forward to in courses that otherwise seemed abstract. This tendency of a students

to use programming languages as a way to comceptualize also worked in a negative

way: one course at Georgia Tech was taught in Smalltalk, a course students generally

perceived as useless (i.e. not used by anyone for “real” purposes). This course was

mentioned repeatedly as a source of anger, with Smalltalk’s uselessness presented as

the key failing. For good or ill, it definitely seems like students use the languages

taught in particular courses to reason about them.

4.2.4 Misinterpreted Names

“So [the media thread] could be anything in maybe the news, in broad-

casting, certain media outlets like YouTube or Flash and basically design,

I’d say. If you were designing a video game you might choose media as

one of your threads if you wanted to design one.”

96

—P14

The student above has a potentially problematic conception about the media

thread at Georgia Tech. This thread covers computer graphics and computer audio.

The thread does have some aspects of video game design (although it does not include

GUI design, which the student asserts later). It does not have a great deal to do with

broadcasting, YouTube or Flash. The student seems to be reasoning based on the

name “media”.

Students reasoning incorrectly based on a particular name was moderately com-

mon. While it may seem on the surface to be very concerning, part of it may be the

artificially of the interview environment. Students are separated from the resources

they would normally use to make decisions about classes and then are asked a highly

specific question like “what do you suppose might be taught in your Operating Sys-

tems course?” Given those circumstances, students who don’t know the course might

well speculate that the course covers differences between Linux and Windows. It

is difficult to know if the student would use that reasoning when deciding to take

an Operating Systems course, given that the states are higher and more detailed

information is just a few clicks away.

It is worth noting however, that the names a school uses in its curriculum is

significant at least in students’ causal reasoning. Naming an area of specialization

“intelligence” may be more evocative than “machine learning, pattern matching, and

search algorithms”, and may encourage student interest. It also clearly presents the

possibility that students will reason about it like it’s a part of philosophy department.

4.2.5 Summary

In this section, we identified several common potentially problematic conceptions:

1. Lack of Specifics About Future Courses. Students generally did not know much

about the content of future courses, both for courses they were required to take

97

and courses that were electives.

2. Role of Theory. Many students did not understand the purpose of CS theory,

and a few left it out of their description of CS entirely.

3. Languages Rather than Concepts. Students often overemphasized the impor-

tance of learning programming languages in their courses, rather than focusing

on larger more conceptual learning goals.

4. Misinterpreted Names. Students often drew conclusions of the content of their

curriculum based on misinterpretations of the names of courses or specializations

(e.g. ‘media’ is about broadcasting).

The main thing to take away from these potentially problematic conceptions was

that many of the potentially problematic conceptions were caused by a simple lack of

familiarity with the curriculum. Students generally had not formed detailed concep-

tions about CS in general, and their reasoning in interviews seemed quite tentative.

Nowhere did we see students expressing conflict with their instructors and attempt to

take their learning in a different direction (as observed by Nespor [60]). Sometimes

the omissions in students views of CS were smaller (e.g. not having an idea what is

covered in an Operating Systems course) and sometimes larger (e.g. missing theory

entirely), but students did not seem to have detailed conflicting views of CS.

Combining the potentially problematic conceptions with the 3 main viewpoints in

the first section, the overall picture of student conceptions is one that is accurate at

a high level but with problems with regard to specifics of courses or subfields. In the

next section, I discuss how students reflected on their own changing conceptions and

look at how some of these potentially problematic conceptions evolved in at least a

few students. In the next chapter, I discuss how students make educational decisions

about things like classes and why even bright students don’t generally have a detailed

view of CS as a whole.

98

4.3 Change of Conception

This section discusses how students believed their views of CS had changed over time.

Because this is based on student reflection rather than longitudinal interviews, it’s

important to treat this data with caution. That said, student reflections on how

their views changed provides insight into what changes seemed significant to students

in retrospect, even if it is not a completely accurate view of the entire process of

conception change.

4.3.1 CS is Not Just Programming

“I mean, since I was little I just saw, when I think of computer science I

thought of my dad all the time and all he did, he was a coder, a developer.

So I just like imagine him when someone says computer science. Oh dad,

what does he do? Code, that’s what he does. And I come to high school

and even in high school all they taught us was Java. And Java is just

coding. So we just sit in front of a computer coding. And then I come to

college and then I think after coming to college my idea of what computer

science actually changed . . . I think it changed pretty quickly. Like joining

the different organizations I saw people always talking about different

threads they’re taking and CS 1100. . . ”

—P13

Many students talked about how initially they viewed CS as just programming but

that view changed either in high school or early in college. Many students had comput-

ers science classes in high school that they described as basically programming. Even

before students had taken a high–school CS class, they had somehow heard it was pro-

gramming. Students described expecting CS to be learning additional programming

constructs, or languages, or specific applications (e.g. how to build webpages) when

they initially enrolled in CS. In addition to talking about non–programming subjects

99

or careers with CS, student also emphasized that this programming–only view did

not realize the importance of algorithms which they later came to appreciate. Many

students remarked that CS seemed more interesting after it became clear it was not

just programming (even students who were enjoyed programming).

Students often contrasted their current views with thinking of CS an earlier view

of CS as “just programming”, but only one student actually asserted that CS was just

programming in the interview. This change seemed to begin quite early in the curricu-

lum — just about the time students were introduced to data structures. Some views

that I classified as programming–view often were very close to just–programming in

that students could not think of examples of CS activities outside of programming.

Students have heard that CS is not just programming, but it seems like their view of

the non–programming aspects of CS evolve over time.

4.3.2 CS is Not Application Use

“. . . people come into computing are a lot like people who like to look

through a telescope and think they wanna go into astronomy, and the

analogy that everybody uses. They don’t realize what does computing

mean. Many times they think that they’re going to come in and learn

how to use the applications. They don’t realize what you can do with

computing . . . ”

—P7 (student advisor)

Both in my own work with high school students (see related work chapter) and

in my interviews with student advisors, there seemed to be hints that students might

initially come to computer science with conceptions that include application use or

3D–modeling for example. For the undergraduates I talked to, there did not seem

to be conceptions of this sort, at least as a “main” view of CS. For example, a stu-

dent might argue that subfield of computer graphics might include some art training

100

while still having a programming–centric view of CS as a whole. Students did not

recollect many conceptions of this sort, but several did say they really had very little

understanding of CS before their first courses.

I suspect that the reasons I did not see conceptions of this sort was because

even the freshmen in my study all had taken at least most of a course in Computer

Science. Student advisors definitely agreed that application oriented conceptions

exist, but it seems that a single course in CS is enough to revise this conception.

Because introductory courses tended to focus on algorithms and coding, I suspect

these students revise their conception to a programming–view or (as I did see in a

few students) a breadth–view that still maintained a few incorrect assumptions about

later curriculum. All that seems to be clear is that application–oriented conceptions

and other very unusual views of CS did not seem to be represented in the students I

interviewed.

4.3.3 CS Deeper Than Expected

“I guess 1331’s a really easy class, I guess, because it’s an intro to objects,

so they make it really easy. And I was like, ‘Oh, I get this programming

stuff.’ And I got to 1332, and I was like, ‘Whoa, I don’t get this.’ And so

that was - I realized then that it was a little more complex. And I got it

at the end of the class, but I was kind of more apprehensive about taking

any more classes after that. And then after that I took 2110 and then I

was even more apprehensive.”

—P19

Similar to discovering that CS was not just programming, many students remarked

that a lot more went into CS than initially anticipated. This viewpoint change also

occurred early in the curriculum — anywhere from the first intro course to computer

architecture. This was seen a less positive change by students: students were often

101

attracted to CS because it seemed easy and they performed better than their peers.

Students experiencing this change often began to wonder if they had the made the

right decision to major in CS.

The exact topic matter that was deeper than expected varied. Some students

talked about designing code as being more challenging than they anticipated. Oth-

ers were surprised about learning details of hardware. In all cases, it seems that

the students conceptually found the new material interesting, but it was also more

challenging than they first imagined.

4.3.4 Learning About Subfields of CS

“Like before when I thought of robotics, it was kind of like two different

classifications. You had either the robotics like industrial robots, which

was just an arm doing some kind of task, moving something, or you had

a humanoid robot, which was trying to walk around or do something or

interact with the environment, but it was humanoid. And then through

the things I saw in the class, I saw that there are very broad fields of

robots . . . there’s robots that hop on one leg, robots that hop on two legs.

We saw robots shaped like snakes that wiggle around and can climb up

poles . . . Just things like that I was like I had no idea we were even trying

to do that much less that you could.”

—P20

This last change of conception was in many ways the most interesting because it

seemed to represent an elaboration of the main conceptions identified above. Among

all the three main types of conceptions, students generally had a very vague under-

standing with regard to particular subfields of CS. Students from a broad viewpoint

might mention that you could build robots in Computer Science but (maybe beyond

one example) they could not elaborate on robotics or any area in particular. But,

102

for a few students, a recent change occurred that encouraged them to deeply look

into an area of CS. As a result of this research, they had significantly greater detailed

knowledge which significantly expanded their idea of what was possible in Computer

Science. In most the cases I interviewed, these students were seniors who had just

started looking into this new subfield. They did not have details on the connections

between their field and other areas of CS. This suggests that there are potentially

more elaborated viewpoints of CS for some students after graduation.

4.3.5 Summary

Student viewpoints about CS are clearly changing as they experience the undergrad-

uate curriculum. All of the changes students noted suggest a greater respect for the

complexity of CS, and a feeling that CS had more possibilities than before. The fact

that students are experiencing significant changes in their views, even near gradua-

tion, suggests there are likely to be further changes to student conceptions of CS after

they leave their undergraduate careers.

4.4 Effect of Curriculum on Student Conceptions

The other sections of this chapter have focused on student conceptions with CS: what

they are, what their problems are, and how they change. This section focuses on a

different question: does a school’s curriculum affect student conceptions? In Study

1, I interviewed students at three schools. Although each school was an accredited

Computer Science program with courses in data structures, algorithms and other

traditional CS topics, each school’s curriculum also differed in important ways.

1. Georgia Tech. One key difference between Georgia Tech and other schools was

the ThreadsTMprogram [37]. Students select two “threads” as part of their de-

gree off a list of eight: Devices, Information Internetworks, Intelligence, Media,

Modeling and Simulation, People, Platforms, and Theory. The courses in these

103

threads make up over half their required CS courses. As a result, students at

Georgia Tech were required to specialize more and at an earlier stage in their

degree program.

Georgia Tech’s CS degree program was also the largest, allowing the greatest

variety of specialized CS courses. Although there were some courses designed

to introduce students to the various specialties of CS, generally students did

not mention them as a impact on their conception of CS. Students interviewed

often had one or more CS courses in high school.

2. Duke. Duke’s program had fewer elective course offerings than Georgia Tech

and a larger set of required courses. Duke’s program also encouraged multiple

degrees; many of the students I interviewed were combination CS/ECE majors.

Duke had two introductory programming courses (one for engineers and one

for non–engineers), both of which were fairly programming focused. Students

interviewed often had one or more CS courses in high school.

3. Spelman. Spelman College is a traditionally African–American Woman’s col-

lege. Unlike Duke and Geogia Tech, Spelman does not have a Computer En-

gineering program separate from CS. Spelman’s introductory CS course was

not programming focused, and students frequently remarked that it changed

their view of Computer Science. Students interviewed usually had not taken

CS course prior to coming to Spelman.

Overall, student conceptions were similar even at different schools. Each school

contained students representing each of the three main conceptions, with the excep-

tion of Spelman which did not a have a theory–view student (at least among those

interviewed). The curriculum at each school may have encouraged students toward

one view or another: given the small sample size and variation between individual

students, it’s not possible to draw any conclusion about conception prevalence from

104

this study. However, there were some noteworthy differences between students at the

three schools.

4.4.0.1 Differences Between Duke and Georgia Tech

In general, Duke and Georgia Tech students seemed similar in their conceptions of

CS. There did seem to be some affect of the ThreadsTMprogram: students at Georgia

Tech had considered their threads somewhat and made tentative selections even at

early stages. Duke students by contrast had no decisions to make earily and therefore

did not know much about later courses. Neither group had detailed knowledge of

particular subdisciplines of CS or the content of future courses. The pre–college

background of both groups was similar as well.

4.4.0.2 Differences Between Spelman and Other Schools

Spelman students were different from Georgia Tech and Duke students in several

key ways. Most obviously, Spelman students’ background tended to be different. The

majority of CS students interviewed at other colleges enrolled with some programming

experience, Spelman students often selected CS without either high-school courses or

personal experiences coding. Perhaps as a result of this, Spelman students often felt

their initial Computer Science course was a large influence on their view of CS as a

whole.

Spelman students often emphasized that an important part of CS was communi-

cation and group work skills:

“I think biology I would have just been kind of studying and taking the

tests, and that’s all. But, I feel like for computer science I definitely —

we have a lot of group projects, there’s a lot of times where we have to do

things together . . . But, a lot of the times we worked together and had to

really figure out how to solve a specific problem right then and there. So,

I think that my Computer Science courses helped me to really get that,

105

whereas if I were in biology or any other subject, I don’t think that I

would have been able to get that type of experience, and be able to figure

out how to quickly come up with a solution, or a solution for that matter,

at all.”

—P30

Part the reason for this emphasis may be the introductory course. Spelman’s

introductory course emphasized that a variety of career options were possible from

Computer Science including managerial roles. Another contributor was that more

Spelman students were seeking non–programming careers after graduation (they did

not usually have a concrete idea of what the wanted to do after graduation, but

they had decided not to do programming). Students outside Spelman were much

more ambivalent. A few students mentioned communication skills as useful, but

almost no one mentioned them as a key component of CS knowledge. Other non–

Spelman students contrasted technical programming knowledge (as CS) and project

managment skills (explicitly non–CS).

Spelman students were also much more likely to include the building of computer

hardware as part of CS. Outside of Spelman, students usually confidently enforced

a strong delineation between CS as software related and Computer Engineering as

hardware related. Inside Spelman, building computers was frequently mentioned as

a CS activity. This may because Spelman did not have a Computer Engineering

department.

4.5 Summary

This chapter has focused on answering the following research question:

RQ1: What types of CS field conceptions exist in CS undergraduate students?

Student conceptions of CS on the whole had several key things in common with

each other. Student conceptions included programming as a part of CS, but also

106

included non–programming. CS students acknowledged that algorithms were an es-

sential part of CS, and that developing algorithms to solve particular problems was

an important CS activity. In that sense, student conceptions were in line with the

curriculums of the their schools.

Student conceptions fell into three main categories. Each of these categories had

variations, but had specific characteristics that set them apart:

1. Theory–view: CS as Mathematical Study of Algorithms. Theory–view students

thought of CS as a primarily theoretical (and academic) discipline. The de-

sign of conceptually difficult algorithms was most central to CS, as were other

mathematical ideas like Big O and NP–Completeness. Theory–view students

emphasized that CS existed even without real computers. Students varied in

their association between CS and programming — from programming as clear

part of CS (but slightly less central than theory) to programming as related but

different (more engineering–oriented) field. Theory–view students tended to be

accurate in their reflection on previous courses and anticipation of the content

of their later courses.

2. Programming–view: CS as Programming–Centric but Including Supporting Sub-

fields. Programming–view students considered CS to be mainly about pro-

gramming, but emphasized that other subfields were also necessary to do good

programming. Writing programs to solve large and technically challenging

problems was the central activity. Professonal programmers were clearly Com-

puter Scientists. Programming–view students varied on how important non–

programming subfields of CS were: everything from small helpful fields to im-

portant subfields in their own right. Programming–view students occasionally

107

exhibited potentially problematic conceptions, especially with regard to under-

standing how non–programming subfields related to the activity of program-

ming.

3. Broad–view: CS as Having Many Different Subfields, Broad–view students thought

of CS as mix of many different computer–related subfields. Theory, Robotics,

Programming, and (often many) others are all equally parts of a broad CS um-

brella. There was no single central activity of Computer Science and no central

practitioner. In this view, comparatively little knowledge was considered essen-

tial to a Computer Scientist; students emphasized the differences between sub-

fields and the freedom to pursue different paths. Although broad–view students

identified (and was excited by) interdisciplinary fields related to CS, they gen-

erally did not have detailed knowledge about them. Broad–view students had

difficulty anticipating contents of their future courses, occasionally exhibiting

potentially problematic conceptions (like OS class involves differences between

Linux and Windows).

All three conceptions represent a potentially productive view of CS (at least insofar

as correctly reasoning about the curriculum is concerned).

Students also exhibited a few potentially problematic conceptions. Students had

difficulty understanding the purpose of theory. Students overfocused on learning new

programming languages. Students made incorrect inferences about course contents

based on the names of classes and specializations.

The most common potentially problematic conception, however, was simply that

students did not have a detailed view of CS or their later CS courses. Even among

areas of CS that they were interested in pursuing, students generally did not have

concrete ideas of what their courses would contain.

Although this chapter has discussed many small details of student conceptions of

108

Computer Science, there are two main points to remember that are important for the

next chapter on educational decisions:

1. Students conceptions on CS varied, but most students had a conception of

CS that aligned well with their school’s curriculum at a high level. Students

expected to learn about both programming and non–programming topics. Stu-

dents acknowledged the importance of algorithms in CS. Students generally

viewed their instructors as in–line with their own goals about Computer Sci-

ence.

2. Student viewpoints generally lacked specifics. They generally did not anticipate

the contents of particular classes. In that sense, they were ill–equipped to make

large scale decisions about what areas of CS to focus on.

The next chapter will focus on how students made educational decisions given this

moderately accurate but vague understanding of Computer Science.

109

CHAPTER V

STUDENT EDUCATIONAL DECISIONS

In the previous chapter, I introduced three main conceptions of CS. Students of all

conceptions acknowledged the importance of programming and non–programming

topics, including the study of algorithms. In that sense, students were aligned with

their curriculums at a very high level. However, student conceptions about the field

of CS generally lacked specifics. When students were asked to anticipate the contents

of future courses (even elective courses they had selected) it generally seemed the

interview was the first time they had seriously considered what their future courses

would teach (see Section 4.2.1).

How can students select elective courses without a detailed understanding of their

alternatives? How do students make larger educational decisions like the choice to

specialize in a particular area of CS? This chapter will present a theory about how

students make educational decisions and the ways conceptions of the field of CS do

(and do not) affect these decisions.

Our interviews suggest students make educational decisions in a way that initially

seems arbitrary. Students in CS generally did not have specific career goals or skills

they were hoping to learn in Computer Science. As a result, they did not worry about

which courses or specializations would best help them achieve their goals. Instead,

they were mostly concerned about finding an area of CS that they would be well–

suited for. They measured how well–suited they were for a particular area by how

enjoyable they found classes in that area.

Having an unenjoyable experience in a CS course generally motivated students

to further elaborate their idea of Computer Science. For students, an unenjoyable

110

experience indicated they were poorly suited for an area of CS and encouraged them

to change their educational plans to avoid it in the future. This was also a time

when they sought out advice from experts or parents. Once students had identified

a concrete goal they felt they were well–suited for, understanding the field became

important and useful. With a concrete goal, students became able to identify courses

that were useful and not useful based on their conception of CS. But students who had

concrete goals were much rarer in our interviews: most students were still selecting

courses based on the experience of enjoyment.

Because the experience of enjoyment is so important in student decisions, it stands

to reason that knowing detailed information about the content of future courses is

not important. Students arrive in classes expecting that what they learn will be very

different from their expectations; what they are most interested in is whether they

personally will enjoy learning it.

In this chapter, I will elaborate more fully on the idea of student educational

decisions based on enjoyment. I will talk about the educational implications of this,

and how these implications reflect on the idea of student conceptions on the field

of CS. Finally, I will discuss a few circumstances in which problematic conceptions

about the field of CS did seem to influence student educational decisions.

5.1 A Theory of CS Student Educational Decisions

In this section, I propose a theory of CS student educational decision making based

on my interviews. I begin with some of the puzzling student behaviors that suggests

that students make educational decisions differently than one might expect. Then I

describe my overall theory:

1. Students do not have a concrete goal when they begin studying in a particular

field, and don’t attempt to gain a detailed view of the field quickly. Instead, they

take courses as prescribed by the curriculum. They make the assumption that

111

the curriculum is designed so that (regardless on what they might eventually

pursue) it will put them in a good position. I described these students as

abdicating responsibility to the curriculum. If students have to make educational

decisions, they will generally focus on exploration, i.e. selecting courses based

on casual interest.

2. As students explore classes, they make educational decisions based on enjoy-

ment. They view their enjoyment of their classes as a useful measure of whether

they would enjoy pursing a particular area more. If all their classes are equally

enjoyable, they generally continue to trust in the curriculum and explore. But

if they notice a strong difference (especially if they have a bad experience in a

particular course), it motivates them make educational decisions. Often, they

will narrow their educational focus and more clearly define their goals. This

is when they often seek advice from parents, advisors, and websites. It also

motivates refining a conception of the field.

3. Once their educational focus is sufficiently narrow, students develop a concrete

goal. At that point, students’ approach changes to making educational decisions

based on long term goals. At this stage, they do use their conception of the

field to make educational decisions towards their goal. This occurs late in the

undergraduate career if at all.

The theory presented here are similar to the tentative theory published in my

paper on student selection of specialization [44], with some further elaboration. In

that work, I also stressed that students made choices without a detailed knowledge

of the curriculum based on enjoyment. However, in that paper I did not have an idea

of how choosing based on enjoyment could transition to more goal–based choices. I

also did not see students early behavior as exploratory, and was more concerned that

students were making ill–informed decisions.

112

5.1.1 No Concrete Educational Goals

“It’s hard to remember [why I took a CS class at first] . . . I thought I

was kind of interested in, cognitive psychology and stuff and there’s basi-

cally one — cognitive science actually. There’s basically cognitive science

course and it has as its prerequisites one of the following and the intro to

Computer Science was one of them. So I kind of had it in my head like

‘Oh, I’ll take that and that’s offered in the fall.’ So I couldn’t take that

in the freshman fall cause I hadn’t taken any of the prerequisites. And

then I ended up taking, like, all of [the prerequisites] and never taking

that other class.”

—P36

The first thing to know about students’ decision making is that they do not

have a concrete educational goal in Computer Science. As with the student in the

quote above, a student’s decision to take classes in CS might have nothing to do

with a particular interest in the major. Even for students who select the CS major

before they come to college, they may have enjoyed programming on their own but

they almost never have researched the field of CS or what job they would like after

graduation. Not having a goal makes the process of student educational decision

making much different than you would expect.

For example, when talking with a student advisor, the advisor estimated that a

third of incoming CS freshman have a very off–base view of what CS is about. Given

that, one might expect to see a fair number of students initially major in CS and

then quickly shift to another major that is more in–line with their goals. However,

this does not seem to be a problem because students really don’t have concrete ex-

pectations for what they intend to do with CS. According to the advisors, students

don’t change majors just because CS was radically different from their expectations.

113

Instead students start leaving when their GPAs begin to go down. The advisor es-

timated that only two percent of major changes are students who are doing well

academically but find CS doesn’t match their expectations. Even acknowledging that

off–the–cuff statistics probably have a fair degree of inaccuracy, this suggests that

many students enter CS with an inaccurate conception of what CS is, yet — once

they change their view of CS is — most students (at least initially) persist in CS.

Poor grades are what motivate students to leave CS, not innaccurate views of the

field.

A second example of student decision making without concrete goals is how stu-

dents making long term educational decisions like which courses to specialize in. Even

when students generally have an accurate conception about CS, they often did not

reason and research about CS when they were making educational decisions. Here is

one student discussing how he selected his CS specializations:

“So when I was choosing my threads, I thought it was like choosing my

classes from the World of Warcraft or something, right? They really make

it look like that. Like the little pictures of like intelligence, platforms,

theory. So it’s really like choosing - all right, I’m kind of feeling the dwarf

warrior. So I picked my threads sort of — I mean I’m not too old, but

as you can see from my background, when I got here I really didn’t want

to fool around, so I’m not changing my threads, right? I just went with

platforms, and I went with information internetworks.

And I’ve come to think that it won’t make a difference. I think that the

threads are superficial, but when I say that, I don’t mean it too negatively

. . . It’s fun. But they don’t really - in my opinion, they only sort of direct

your thinking. They don’t limit what you’re gonna be doing after college,

so I don’t think they’re really important, if that makes sense.”

—P24

114

The student in this quote had a sophisticated view of CS that encompassed both the

theoretical and practical aspects of CS. Given that he was capable of reasoning about

the content covered in the specializations, and given that the specialized courses will

make up about half of his CS curriculum, one might anticipate considerable care in

selecting specialization. Other students took similar approaches, almost never doing

research or asking for outside advice when making selections.

When I explicitly asked students about their post graduation goals, they rarely

had a specific job or category of job in mind. Except for students recently involved in

a job search, students’ goals usually were not committed enough to suggest specific

educational paths. One student was deciding between continuing in CS to get a

Masters or Ph.D., joining the Navy, or web programming. The student did not have

a plan for how to purse any of these goals by taking courses in CS. Some students

suggested they might want to become a professional programmer for a company like

Google, although they could not give any specifics about what they would like to do

in such a job or what Google might be looking for. Many students admitted they had

no idea where they would like to work or what they would like to do.

The fact that students don’t have concrete goals early in their CS education is not

necessarily an educational problem. But it does raise a question: how do students

make educational decisions without a goal? What made students select CS initially

if not an idea of what they might do after graduation? Based on conversations with

student advisors, students obviously cared about their grades but students did not

talk about maximizing their grades or avoiding work. Instead, students of all sorts

seemed very willing to just allow themselves to go with whatever the curriculum

offered.

115

5.1.2 Abdicating Responsibility to the Curriculum

“[I found my classes valuable not because] I had some predefined idea of

‘this is what’s important in this topic’ and ‘he should be teaching this’.

It was because all of Georgia Tech’s professors are very well-known . . . so

when you go into a Georgia Tech class and you sit down in front of a

professor, it doesn’t matter what he wants to say. You kind of listen

because you know it’s gonna be important. It’s just the people they are,

that you trust them to know what they’re teaching is important, and

that’s why we come to Tech.”

–P20

At all the schools we talked to, CS students had a great trust that the content

they learned in their CS courses would be valuable to them. Even when they were

not able to articulate why a particular topic was valuable, they were confident they

learned it for some reason (or at least that it was useful to some particular kind of CS

major even if it was not useful to them). In this, they were completely different from

the management majors interviewed by Nespor [60] who colluded to undermine their

teacher’s lessons. Students were also confident that whatever they would be taught

would be useful in accomplishing their career goals, even though in general they were

not sure what those goals were. As a result, students generally selected courses by

looking at the degree requirements and selecting the next courses off the list.

Not only did student expect that the courses they would take would be valuable,

but they also in general expected them to be enjoyable. Students talked about arriving

in courses not knowing what to expect until they were handed the syllabus on the first

day. This was a positive experience — many of them were excited by how consistently

different CS was from their expectations:

“It’s hard for me pinpoint [what my later classes will cover]. It’s still for

116

me still, I’ve had this feeling that by the time I get to a class it’s something

I never really would’ve thought about, but then made simple. I think with

[Computer Architecture] was the idea I never really would’ve thought that

machines and bit level work would ever be something I could do or would

do. . . . And I feel like that’s something I never would’ve expected until I

get there, and that’s kind of the experience I’m expecting with everything

else.”

—P28

Abdicating responsibility to the curriculum has both a good and bad side. On the

good side is students strong belief that the content they were learning was good for

them, and would somehow be useful to them. Even when students were demoralized

and had classes they did not enjoy, they still felt they would probably be good to

know in the long–term:

“I think [Computer Architecture] is important because everyone should

know the foundation of what they’re working on. Like it’s important

knowledge, I was just not interested. But, it’s important to know, it’s

just one of those things where you’re like, ‘Really don’t want to do this,

but I guess I should know it, because I’m going to be working on computers

the rest of my life.’ ”

—P19

The bad side about abdicating responsibility to the curriculum is that students’

knowledge of what is important begins and ends with the curriculum of their school.

The student quoted above, for example, dropped out of her second semester Com-

puter Architecture course. Because that was allowed within the framework of the

curriculum, the student felt it was safe. This is not to say that the decision to leave

117

the course was a bad one: simply that the decision about whether a particular course

is valuable would ideally be about the CS content covered and a particular student’s

goals. The extent to which students believe the curriculum protects them against

bad long term educational choices is perhaps more than their schools’ curriculum

designers intended.

5.1.2.1 Choices Don’t Matter

Students’ trust in the curriculum also manifested itself in a belief that all course

choices that were possible within the curriculum would be of equal value. Here is a

Georgia Tech student who is interested in robotics talking about if it matters whether

he or she specializes in devices verses artificial intelligence:

“Actually I really don’t think so. I don’t think, because when you grad-

uate from Georgia Tech you just have like a computer science, you’re a

computer science major. It doesn’t specify anything about [specializa-

tions] but I feel like once you take classes here you just focus on different

aspects but you have some similar classes as well. . .While we’re talking

about it I’d rather take a devices [specialization] just because there’s a lot

more ECE classes and I think once I graduate the jobs, I think I would

have the same number of jobs available if I took either of them. I don’t

think it’d make a difference.”

—P13

This idea that choosing a particular specialization does not matter was very commonly

expressed by students. Students often asserted that the various specializations covered

the same material but just “different aspects” of the same material. This was true

even though the selection of specialization determined about half of a student’s CS

courses and Georgia Tech’s department website emphasized the different possibilities

enabled by each choice of specialization rather than the similarities.

118

Obviously, some amount of trust in the school’s curriculum is valuable. However

students seemed to take this trust to an extreme level that would allow them to

avoid making educational decisions themselves. In the quote above, for example, it

is probably true that there are jobs available for both students in AI and devices.

But the type of work in the two specializations is different. Other students selected

specializations because they perceived certain specializations as “traditional” CS. The

students argued that traditional was likely to be good and useful even though they

did not know what topics were contained in the traditional specialty they selected.

This section has focused on Georgia Tech students selecting specializations. Sim-

ilar abdication of responsibility was evidenced in students at other schools. Georgia

Tech evidences the difficulty particularly well because it requires students to make

important choices early in their degree. At other schools, students were possibly

even less informed about the contents of possible future choices, but at those schools

students had fewer decisions to make in the near future.

5.1.2.2 Does Abdicating Responsibility Cause Educational Problems?

CS curricula are designed so that students who follow the curricula learn something

valuable. In that sense, students blindly following the curriculum is safer than stu-

dents rejecting the curricula. No matter which specializations Georgia Tech students

select, they learn some Computer Science (even if what they learn is not really dif-

ferent aspects of the same thing, as they imagine).

The greatest risk here are problems of omission. One of the graduate students

I interviewed talked about being very interested in video game programming as an

undergraduate. Going to a small CS program, there were no courses in Computer

Graphics. The school had a variety of opportunities for independent study, but the

student did not realize that subfield of computer graphics existed. Near gradua-

tion when applying for video game programming jobs, the student was surprised by

119

computer graphics questions.

5.1.3 Making Educational Decisions Based on Enjoyment

“Well, it was with the same professor. And I don’t even know what I liked

about it so much but I do remember specifically telling him at point during

the semester that he made me resent doing all my other work because I

just wanted to be working on whatever stuff for his class. I don’t even

know, I can’t explain what I like about it so much.”

—P36

The fun of programming was a part of almost every students’ experience in Com-

puter Science and for many of them was a strong influence on the choice of CS as a

major. Students who had enjoyed AP Computer Science in high school often talked

about how that experience motivated them to select CS as a major. Students who

ended up in an introductory CS course on a whim or to fulfill a requirement chose

to continue on because they enjoyed programming. Even students who eventually

decided they didn’t like programming acknowledged that the feeling of getting a pro-

gram to work for the first time had a unique appeal.

Students liked different things about programming. Some found particular appli-

cation areas cool: robots, media, or even technical projects like building assemblers.

Many found the activity of programming itself appealing: being able to try a variety

of different approaches, the feeling of accomplishment when your code works. A few

students mentioned they enjoyed the feeling of competence programming gave them:

performing better than peers and doing something that was acknowledged to be hard.

A few other students mentioned that programming became no longer fun once they

felt that they were having more trouble than their peers.

The idea that students might be motivated by enjoying their classes is not sur-

prising — for example the Eccles model [30] presents “interest-enjoyment value” as

120

one of the motivators of achievement related choices. What was surprising was the

extent to which enjoyment of classes was mentioned in students’ reasoning about their

educational decisions.

5.1.3.1 Enjoyment as a Guide

“So I decided, when I got into Georgia Tech . . . I needed to major in

something, and I like computers. And if I continue liking computers while

being required to do them, then it becomes more than just a hobby, and

I think it’s a pretty good indicator that’s what I wanna do. So I took my

first programming course with the intent to see whether I would hate it

once I was actually required to do it, and I found — not a surprise, but

— certainly it was a pleasant thing that I loved it. And I got a high A

in the course; went far above and beyond on all the homeworks because I

liked it; I - it was fun.”

—P27

Students used courses as a mechanism to test their own enjoyment of the field of

CS. If they found a CS course enjoyable, that was generally construed as confirmation

that CS was a good choice. Involved in the experience of enjoyment was other things:

you can see in the quote above that the student mentions a high A. It might be

reasonable to suppose that if the student had gotten a lower grade, the course might

not be remembered with such fondness. But the important thing is that the thing

the student uses to make the educational decision to persist in CS is the fun and

enjoyment of the CS class. Similarly, when students had a negative experience in a

class, it was the experience and not the grade itself that they talked about motivating

their reasoning:

Interviewer: So you said that [developing the next great algorithm or

solving known hard problems] isn’t your forte. How do you know it isn’t

121

your forte?

P39: I guess I don’t really know. But I mean like I’ve taken computer

algorithms and through that like just working [on that course] and working

through the problem sets and things like that . . . There’s naturally like

more motivation for me, just naturally to tackle that challenge rather

than a completely theoretical problem with no grounding. It was just like,

‘What if we did this, what happens? What is you apply this algorithm in

this case?’ You know, like knapsack problem or something like that. It

just didn’t have as much interest for me at least . . .

Interviewer: So did you have like academic difficulty in [your algorithms

course]?

P39: Not really. It was like I did sort of average, above average usually

on the test and problem sets. But it just, I didn’t really enjoy the course

. . . That’s definitely my worst grade in Computer Science.

You can see in the quote above, the student needs to be pressed to reveal that his

grade in the course was the lowest he’s received in Computer Science. The students’

main point is that he wasn’t interested in the course and found some of the problems

frustrating. This is not to say that low grades might not be partially responsible for

the students’ dislike of theory. The point I wish to make is that the frustration is

what is reasoned about, poor grades can contribute to frustration, but frustration

and enjoyment are what the students’ describe as their reasons.

You can also see from the quote above how enjoyment of courses is interpreted

as a measure of suitability. The student has had one course in theory then, based

on that experience, characterizes himself as poorly suited for theory. For the student

above, discovering he was poorly suited for theory is not a big deal and the student

is planning to continue on in other areas of CS. For other students, the implication

122

that they were unsuitable for CS was extremely stressful and prompted revaluation

of the CS major. Students treat their experiences of enjoyment and frustration very

seriously.

Students used enjoyment as a guide to their educational decisions, even when

they could easily identify other factors that might have contributed. One student

decided to major in CS, although he admitted it probably had more to do with an

exceptional instructor than the content of the course itself. Another student became

very ill partway through his AI course, missed many classes, got academically behind,

and had to drop out. This student decided to stop specializing in AI even though he

admitted that getting ill might be partly responsible for why his experience was bad.

Students seemed slightly sheepish about their decisions when pressed, but although

they knew that intervening factors could have affect their experience, they still decided

based on their experience of enjoyment.

A course being enjoyable however, was not the same as it being easy. Students

found easy courses unenjoyable sometimes and no student mentioned that a course

was enjoyable because it was easy. Some students even enjoyed courses that took a

large amount of time (hard, by some definition). That said, students generally did

not enjoy courses that they had great academic difficulty. Assignments were a large

part: assignments that were perceived as fun (even when difficult) could contribute

to an enjoyable course, assignments that were frustrating to students made the course

unenjoyable. Feeling that others found the course easier than you made the course

unenjoyable, even if overall grades were average. Students often mentioned feeling like

they were doing better than their peers in courses they found particularly enjoyable.

5.1.3.2 Exploration

“So basically what I figured I wanna be kind of like well rounded . . . Information

Internetworking was the other one and I figured that that would come in

123

handy like pretty much anywhere, you know? Because I have a feeling

there’s lots of jobs for that . . . I mean, media seemed like a lot more inter-

esting like the classes you take and such rather than modeling. I mean,

those are pretty interesting too but I just, I felt like this was more inter-

esting.”

—P25

When students were enjoying most of their CS courses, they selected courses in

what I called an “exploratory” way. They selected courses they were curious about,

given descriptions on the school website. They occasionally considered what might

be good for a job after graduation, but this was usually based on instinct rather

than any concrete data or specific companies they were aiming at. They did not get

advice from instructors or advisors. Only rarely did they consider course difficulty.

Overwhelmingly, what was most important was that the course or specialization seem

interesting.

This exploratory behavior can continue even until junior and senior year. Obvi-

ously by the senior year students need to start making decisions about careers post

graduation, but students with an exploratory approach still did not have a specific

goal. They had some areas they were considering going forward (either in graduate

school or in industry) but it was still an interest rather than a specific commitment.

Students with a strong specific commitment generally could describe an experience

of contrasting enjoyment that triggered their focus.

5.1.3.3 Contrasting Enjoyment Triggers Educational Decisions

“Well, I just wanna explore more aspects of where I could go and what

I could do in the future, and so maybe having a more people-oriented

major, more literature basically, which might involve the major compu-

tational media, so maybe I could explore that, but I just - I know that

124

I’m interested in languages, and I’ve become more interested in history,

so instead of just technology . . . I found [my computer architecture class]

boring, and I didn’t grasp it so quickly, so that generally discouraged me

and what was good about that AP computer science class was that it was

really slow and everyone was at your same level or below you.”

—P14

Enjoyment of specific classes was an important aspect of student reasoning, but it

was not the only things students considered. They solicited advice from parents,

professors, and looked on the departmental website. However, when students reflected

on their own significant educational decisions, it was almost always an unenjoyable

class experience that initially triggered the crisis and forced the student to make the

decision. Occasionally, it was a course that was simply OK at the same time as courses

that were much better. Either way, the strong constrast in enjoyment that made the

student reconsider and being thinking about making a new educational decision.

Unenjoyable experiences caused a student to reevaluate their options. This was

when they would reach out and begin to do research into the various options within

CS. This often gave them a more detailed view of the subfields of CS than other

students. Students would also make decisions about themselves in relationship with

Computer Science. Students would decide they didn’t like the hardware–level parts

of CS, or that they didn’t want to program professionally:

“I think that — I know I don’t want to program, so I’m going to try to stay

away from that . . . Yeah, after my C++ course, I liked it and I still had to

do it, of course. But, I just knew that I don’t think I want to sit here up

all night doing this. I think that I would much rather — actually, I took

a course, too. It was a software engineering course. And, so that was the

life cycle — a life cycle process, and project management. And, I really,

125

really liked that. I was kind of able to see a task through, and I didn’t

have to be the sole one programming, or the sole one doing one thing. I

was able to talk to people, gather information, gather requirements — I

really liked that.”

—P30

Students who had an contrasting experience would often explain themselves in terms

of being a particular kind of person (e.g. a social person, who doesn’t like just

programming all the time). Students before this would usually talk about being

curious about different areas of CS but not saying they were unsuited for a particular

area of CS.

Students would sometimes have an unenjoyable experience but nonetheless choose

to persist. This was particularly true of Spelman students, many of whom struggled

greatly in their introductory courses but were encouraged to continue on by their

parents. Although they continued on, the experience definitely seemed to change

their relationship with Computer Science. Spelman students were far more likely to

describe programming as very challenging but interesting as opposed to students at

other schools who generally described it as fun.

This overall process of educational decision making seemed to occur at two levels

during a student’s undergraduate career: the selection of a particular major, and the

selection of a particular specialization with in the major. A student would have a

experience that would commit them to CS, for example, and then begin engaging in

exploratory behavior to find a specialization within the major. Not every student

talked about both stages — and for many students the selection of CS as a major

came from an experience in high school.

126

5.1.4 Making Educational Decisions Based on Long–Term Goals

“Well, I got interested in robotics. I was enjoying the class. Things

were going well . . . but I wasn’t sure exactly what I should go to towards

learning robotics on my own and in the classroom. So I went to my

robotics professor and asked him for some direction, and one of the things

I asked was simply what threads would you choose . . . And I suppose

the difference between when I changed my threads from when I originally

picked my threads was originally I was thinking from what I like and what

I do what would be good threads. But then when I chose the threads I’m

working with now, it was more where do I want to go and how do I get

there that made me choose them.”

—P20

Up to this point, we’ve discussed students who are choosing based on enjoyment

and adopted an exploratory strategy. A minority of students had a different approach

to educational decisions: they made educational decisions based on a relatively specific

long–term goal for themselves. Most of these students had a contrasting experience

that focused them in a particular area and encouraged them towards a particular long

term goal. For example, the student quoted above had a very good experience in a

robotics course. He changed his threads and started strategically selecting courses to

further a career in robotics — a change from his previous exploratory strategy. Not

every contrasting experience would do this: for example, a student might have an

experience that settled them on majoring in CS versus something else, but within CS

classes the student would still adopt an exploratory approach.

Students approaching CS based on long term goals had much more use for reason-

ing about the field of Computer Science. They often had done research beyond their

127

classes into what was necessary for their long–term goal. They would even take non–

required classes that they anticipated disliking, because they believed they would be

useful for their goal. This was very different from students adopting the exploratory

approach, who would exclusively select classes based on what they imagined they

would enjoy (within the framework of the curriculum).

Two students seemed to have this approach even from entering the CS program:

both of them were interested in programming video games, and that interest persisted

throughout the major. There were also students near graduation who still basically

had a exploratory approach. Based on my interviews overall (not a representative

sample), I hypothesize that for many students, this shift in perspective occurs near

the end of their undergraduate career (depending on the time when they have a

contrasting enjoyment experience).

5.1.5 Peers, Parents, Advisors, and Professors

“It’s an architecture class. And I got there and I was like, ‘I don’t un-

derstand any of this. I don’t really like it.’ And I was kind of hesitant

at first when I talked to my — the advisor in the CS department . . . and

she was like, ‘Well, modeling and simulation would be a lot better, but

you can still do what you want to do with this and just might have some

extra like outside learning.’ I was like, ‘That’s fine, because I don’t want

to take this class.’ ”

—P19

A little should be said about the involvement of other people in student’s process

of making educational decisions. The first is that students were fairly independent:

although many students did mention some others at some point in their process,

generally they described most decisions as being self–made (perhaps with a little

advice). The departmental website was by far the most commonly referenced resource.

128

But when students did solicit external advice, they tended to use each group in

different ways:

• Peers. What was most surprising was how little peers tended to come up in

student discussion of educational decisions. Although students definitely talk

with each other, they generally do not talk about (or at least retain) informa-

tion about the concepts discussed in later CS classes. They do talk about the

difficulty of courses, although plenty of students I talked to did not even have

information about that. Students did not evangelize particular specializations,

and it was even rarer for students to talk about being attracted to the major

by others. What peers did seem to provide was gossip about particular special-

izations (e.g. ‘everyone knows’ the theory specialization is really hard), which

students did occasionally use in their decision making process.

• Parents. Parents were heavily involved in some students’ decision making, espe-

cially when initially selecting a major. Parents generally seemed to encourage

students to make educational decisions with an eye towards careers. Some

students seemed to talk about consulting with their parents frequently, some

mentioned it hardly at all.

• Advisors. Georgia Tech was the only school with explicit departmental advisors

that students had to meet with every year. At Duke and Spelman, students

were required to meet with CS professors yearly. Students did mention going to

advisors when they experienced a contrasting experience. The advisors them-

selves mentioned that students mostly sought them out to ask about graduation

requirements. No student mentioned an advisor that they regularly met with

for advice.

• Professors. Some students had a professor they had developed a personal

129

relationship with after enjoying a particular course. Students in a such a re-

lationship frequently talked about getting advice about educational decisions.

Most other students did not mention getting advice from professors, even when

considering changing specializations or having a bad experience in a particular

course.

5.2 Implications of the Theory

In the previous section, I outlined a theory of how CS majors make educational

decisions based on interviews. To summarize:

1. Students abdicate responsibility to the curriculum and rely on it to teach them

what is important without attempting to gain a broad view of the field. If

students have to make educational decisions, they focus on exploration and

select courses based on casual interest.

2. As students explore classes, they make educational decisions based on enjoy-

ment. They view their enjoyment of their classes as a useful measure of whether

they would enjoy pursing a particular area more. If all their classes are equally

enjoyable, they generally continue to trust in the curriculum and explore. Con-

trasting enjoyment triggers educational decisions: Enjoying one course much

more or less than others will make them reevaluate their current situation and

focus their goals.

3. Once their educational focus is sufficiently narrow, students develop a concrete

goal. At that point, students’ approach changes to making educational decisions

based on long term goals. At this stage, they do use their conception of the

field to make educational decisions towards their goal. This occurs late in the

undergraduate career if at all.

130

In this section, I will look at several implications of the theory. I will look at the

relationship between this theory and other models of educational decisions. I will

argue that the theory predicts students will rarely object to the contents of courses,

except when they have unenjoyable experiences. Finally, I will argue that detailed

conceptions of CS are not perceived as useful to student educational decision making.

5.2.1 Relationship with Existing Theories

5.2.1.1 Eccles Model of Choice

Eccles and colleagues [30] have done considerable work investigating the relationship

between students choices (including college major choice) and a variety of social iden-

tities (including race and gender). In Eccles’s model, student educational decisions

are influenced by two main factors: subjective task value and expectation of suc-

cess. Both factors have a relationship with the idea of “enjoyment” as described by

students in interviews.

“Subjective task value” in Eccles’s model refers to the benefit choosers believe

they will receive by making a particular choice (e.g. specializing in a particular area

of CS). It has three components:

• Interest-enjoyment value. Interest–enjoyment is how enjoyment of a particular

activity would be classified in Eccles model. The fact that students mentioned

it frequently is consistent with Eccles model.

• Attainment value. Attainment value is the perceived benefit placed on a partic-

ular choice by a valued social identity. For example, if one’s gender is normally

associated with ‘helping others’ then choosing a specialization involved with

helping others reinforces a valued identity. I did see some students particularly

mention that they were interested in helping others and a few others interested

in being “social.” Overall, though, students did seem to focus more on interest–

enjoyment than attainment. It could be the educational choices this research

131

study focused on might not be perceived as having different attainment values

(e.g. a specialization in artificial intelligence was just a valuable as architecture),

perhaps because students did not know many details about them.

• Utility. Utility is the usefulness of a particular choice, leaving aside issues of

identity. Students did consider issues of getting a job and logistical concerns

like needing to graduate on schedule. These seemed to be secondary most of

the time, except in certain obvious cases (dual–major students tried to select

courses they could count twice, etc.).

“Expectation of success” is the second aspect of Eccles model, basically measuring

students’ estimation of their likelihood of success given a particular choice. This is

an interesting area of difference between the Eccles model and my own work, because

of how intermeshed expectation of success and interest/enjoyment value seemed to

be in my interviews. Eccles model is an expectancy value model — decisions are

driven approximately the value of a particular choice (subjective task value) and

their estimated likelihood of getting that value (expectation of success).

In my work, student enjoyment seemed almost interchangeable with expectation

of success. Students who had an unenjoyable time felt they were unsuitable for a

particular subdiscipline (i.e. subjective task value changes expectation of success).

The reverse also occurred in my interviews: feeling that one was doing well compared

to peers for example, seemed to motivate increased enjoyment (i.e. expectation of

success changes subjective task value). In interviews, students would routinely treat

what they enjoyed doing and what they thought they were good at doing as pretty

much the same thing. For example, consider this quote:

“I can come up with a solution or maybe a few solutions but they are

definitely not the optimal sort of things. And when you ask me to do

your proofs, I can do proofs. It just — I don’t know, maybe it’s just like I

132

haven’t learned the correct pieces here and there but it I didn’t really have

a firm understanding of it and a lot of sorts of more complex algorithms

like why they work, how they work, why the runs times that — it takes

me a bit more time to understand those aspects. But in terms of actual

application and coding, I’m personally fine.

[omitted discussion of if theory classes require more effort/time]

There’s naturally like more motivation for me, just naturally to tackle that

challenge rather than a completely theoretical problem with no ground-

ing. It was just like, ‘What if we did this, what happens? What is you

apply this algorithm in this case?’ You know, like knapsack problem or

something like that. It just didn’t have as much interest for me at least.

And for interview questions like, ‘Oh yeah, we have this tower defense

game and you have all these sprites going around. What’s the most effi-

cient way to sort of scan your surroundings to find the different enemies

and how to decide whether to fire or fire at the next person or like the

next enemy or whatever?’ That’s sort of a lot more interesting and I can

sort of go through iterations and I come up with algorithms.”

—P39

Note that in paragraph two, the student naturally transitions from saying he

perhaps doesn’t have the background to correctly understand theory (expectation

of success) to describing problems he’s motivated to solve (subjective task value).

The final sentence has both meanings: the student is saying that grounded interview

questions are more interesting to him, and that he feels capable of solving them

compared to problems with a specific optimal solution.

Looking at the quote above, it’s impossible to determine if the student is saying

he is not motivated to learn theory, therefore he isn’t good at it or vice versa. I

133

doubt that the student has an explanation himself. From an educational decision

perspective, it doesn’t seem to matter: students focus on areas they like/are good

at, and avoid areas they dislike/are bad at. In this document, I will continue to use

‘enjoyment’ to describe student experiences in courses, which is similar to students’

own language. But enjoyment as students refer to it has a component of self–efficacy

as well.

Overall, this work is complementary with Eccles. In the case of educational de-

cisions that CS majors make, it seems that interest–enjoyment value is more critical

than attainment value for example, which would be difficult to predict from the Eccles

model alone. However, the Eccles model does suggest an aspect of student decision

making (self–efficacy) that it is difficult to assess accurately in this study.

5.2.1.2 Nespor’s Study of Student’s in Two College Majors

Nespor [60] observed students in two different majors (physics and management) and

compared and contrasted how each group of student developed disciplinary knowl-

edge. Physics students worked together in groups to understand the material from

class and solve the challenging problems from the textbooks. Management students

collaborated to circumvent their school’s curriculum and practice the skills they con-

sidered important on their own. Nespor’s approach was different than this study —

Nespor actually observed groups of students working, as well as interviewing them.

However, even without observational data, there are differences between Computer

Science students and the two groups Nespor interviewed.

Computer Science students were clearly different from the management students

who developed their own management curriculum and subverted the curriculum of

their instructors. Computer Science students generally trusted their instructors im-

plicitly and assumed content was valuable even when the did not understand why.

134

But the CS majors were also different from the physics majors: based on conversa-

tions with students, there’s little evidence for the close–knit study groups that Nespor

observed. Moreover, in Nespor’s observation these groups often independently dis-

cussed content areas and even brought in external resources beyond the curriculum

for a broader view. The CS students I interviewed definitely did not mention external

resources beyond the curriculum; although CS students may be collaborating, I don’t

see evidence that they are using this collaboration to gain a broader view of the field.

What is similar to Nespor is that CS did seem to have a major culture that at least

partially seemed consistent across distant schools. Consistent with Nespor’s ideas, a

large part of that culture seemed involved with the particulars of the sort of problems

students solved: largely programming problems. In CS students, the enjoyment of

solving these problems (and the lack of enjoyment, for certain problems) motivated

students as they made decisions about their long term goals with CS. Given that,

Nespor’s hypothesis that different disciplines generate different cultures based on the

problems they consider important seems consistent with the results of this work.

5.2.2 Students Rarely Have Preconceptions But Can Lose Interest

“So [combinatorics is] kind of like an extension of [discrete math]. I mean,

kind of I guess. Some of the stuff I could definitely see how it relates to

CS like graph theory and such but some of the other stuff it’s just like

‘Why are we learning this?’ You know, like recurrence relations. I don’t

see how this would ever come in handy in CS like ever. Like not even just

like maybe it’d be useful in like a thread. I don’t see when it would ever

come into play. So, I mean, just maybe if it did, maybe kind of just make

the class more relevant be like oh this is used here. You know? This is

why you’re learning it.”

—P25

135

Everything I’ve discussed thus far suggests that students do not have concrete

content expectations for their CS classes. Students conceptions of CS aren’t detailed

enough to include specific expectations for classes. Students don’t have specific ed-

ucational goals for particular classes (or for their CS degree as a whole). Students

generally abdicate responsibility to the curriculum and rely on instructors to tell them

what is important. Given all of that, how do we make sense of the quotes such as the

one above that seems to be explicitly criticizing course content?

Students do complain about courses, but they do not often complain about the

course not covering expected content. Although students initially don’t have expecta-

tions, as the course continues they can decide that the course has problems. Students

may dislike the educational approach or even complain that the material is not useful

to them. ‘Not useful’ in this case is strange because students don’t have concrete

educational goals, but students did use the term.

More often, students would not have complaints about the content they were

learning but would not understand why they were learning it. They trusted that the

content would be useful to them, even if they couldn’t understand why:

P35: I would say theory is more just what were we just doing? The

foundation, induction, loop invariance, it’s pretty vague in my mind.

Interviewer: Does that sort of thing seem useful to you?

P35: No, not really. Just understanding yes, but I don’t really see why,

just coding, I don’t see why I have to know this when I’m coding. I don’t

see that right now.

Interviewer: Do you think that you will at some point sort of see a rela-

tionship between coding or is this something else?

P35: Maybe later, towards graduation if I have to do something and I

have to find a more efficient way or I have to change the way this program

136

is implemented, then I can see it. But now, I don’t.

The key point here is that oftentimes instructors attempt to explain the purpose

of content, but that purpose does not sink in. Students’ lack of understanding the

purpose of content can interfere with both learning and motivation [16]. Students

seem are willing to attempt to learn content without understanding it, so if the

purpose is important students should not be relied on to volunteer the fact they

don’t understand the purpose of what they are learning.

Similarly, professors should not expect most students to be able to request specific

courses or complain when content is missing from a course. In my interviews, I often

asked students what additional courses they would like to see: in general students

wouldn’t have ideas or they would suggest a course in a particular programming

language. Similarly, student advisors said they students almost never requested new

courses be added to the curriculum, but that they would complain if there was a

course in the catalog that was no longer offered. Students at Georgia Tech who got

to choose between specializations said they liked it, but students at other schools did

not mention feeling that they had insufficient control in their curriculum.

5.2.3 Detailed Conceptions of CS Don’t Help Make Educational Deci-
sions

The way students approach educational decisions is related to their conceptions of the

field of CS. Students use enjoyment to measure their suitability for a particular major

or specialization. A detailed understanding of CS would not let a student know what

her or she is really interested in: ‘What part of CS is enjoyable to me personally?’

Once a student has a particular goal, a detailed conception of CS becomes useful.

With a particular goal in mind, a student can reason about courses that would or

would not be valuable — independent of the question of whether a particular course

would be enjoyable. If the students I interviewed are representative (and they may

not be) then students do not generally decide on a particular goal in CS until late in

137

their undergraduate curriculum, after most major educational decisions have already

been made.

This answers one of the research questions I posed: do potentially problematic CS

conceptions effect student educational decisions? At least in the case of decisions like

which courses and specializations to select, my research suggests the answer is no.

Students have several conceptions of CS all of which are accurate at a very general

level. For most of the students I interviewed, that is sufficient because enjoyment is the

primary way students reason about their courses and a more detailed understanding

of the field would not help make a decision.

Given that students use enjoyment as a measure of suitability, the strategy stu-

dents adopt makes sense. Students take courses required by the curriculum. Students

rely on the curriculum to ensure they are exposed to a variety of areas all of which are

potentially valuable long–term. Where choices exist within the curriculum, students

select what sounds interesting but it is not a problem if they are surprised.

5.2.4 Summary

This section has discussed implications of the theory of CS undergraduate educational

decisions, based on my interviews. The main points to recall are:

1. The theory is consistent with existing research into educational decisions, such

as Eccles [30] and Nespor [60]. Eccles work is particularly interesting, as it

suggests that there is a complex relationship between self–efficacy, enjoyment,

and student educational decisions.

2. The theory suggests that students generally do not have concrete content they

intend to learn in particular classes but can lose interest in a course over time.

Also, students are usually not able to identify missed content that would be

useful to them or courses they would like to take.

138

3. Because students use enjoyment to measure suitability, a detailed conception

of the field of CS is not useful in making educational decisions about CS. As

a result, the general level understandings identified in the previous chapter are

likely accurate for the reasoning students do.

5.3 Some Educational Problems

In the previous section, I suggested that, in general, students conceptions of the

field of CS were sufficient to make reasonable educational decisions. However, in the

interviews I did see a few key examples of problems caused by conceptions of the field

of CS. We will review two of them in this section.

5.3.1 Realizing It Was Useful Later

“Some of the [coding problems] I remember looking at and thinking ‘How

could this algorithm ever be useful?’ . . . But I’m definitely more open to

the idea that, maybe not in the context they presented it, it wouldn’t be

useful, but I can definitely see how this kind of thing would be really, really

important down the road. Especially like a tree traversals for example is

one that I was like ‘Why would you ever do this?’ And now I’m seeing

trees are everywhere so I use them all the time. So that would be an

example of a big one.”

Occasionally students would reflect that they now understood the purpose of cer-

tain topics, even though they seemed arbitrary at the time the first learned them.

This was especially mentioned in context of courses the student had originally strug-

gled with. Students would often describe the initial course as unenjoyable, and it

would also even have sometimes caused students to reconsider their options in CS (or

even other majors). The student often reflected that they wished they had under-

stood the purpose initially: that learning the material without understanding how it

could be used made them work less hard.

139

Viewed in the context of the theory of educational decisions, this problem has

some interesting complications. Based on theory, it’s unlikely that the student en-

tered the course expecting to learn particular topics. So if the professor imagined

the students understood that context, that could be part of the problem. However,

most of the content students talked about (as in the example above) was introduc-

tory material that presumably most instructors would have attempted to motivate

— but perhaps that motivation was not explained clearly. It is also possible that

students, experiencing frustration with the course, decided the material they were

having difficulty learning was ‘useless’ simply because of the bad experience.

In either case, given that students make educational decisions based on enjoyment,

this definitely has the possibility to cause educational problems. Many students talked

about useless material that convinced them to move out of a particular specialization.

It is impossible to know how many of them would have later decided it was useful if

they had persisted in that specialty. Presumably there are also students who found

useless material motivated them to leave the CS major entirely — but they would

not have been available to interview.

5.3.2 On the Edge of Computer Science

“I would like [some CS courses that] just relate computer science and the

things we can do with computer science with business, like how can we

help this person’s business be more effective, how can we implement this

kind of technology into this business, how can we help the systems within

the organization. It’s just more of an interest to me.”

–P35

Most students did not have a concrete goal in Computer Science, but generally

liked most of their Computer Science classes and enjoyed programming. They gener-

ally did not have good knowledge of future courses, but it seemed likely they would

140

find some aspect of Computer Science they enjoyed. A few students, however, did not

enjoy some aspects of CS but persisted. The student quoted above, for example, did

not enjoy programming and seemed to be learning towards a job supporting technical

infrastructure at a company. Similar to other students, this student had inaccurate

views of later classes, including thinking that the Operating Systems course would be

comparing and configuring OSes like Windows and Linux. In the case of this partic-

ular student, this is more concerning because their assumption about the Operating

Systems course is reinforcing the idea that CS has many IT–oriented courses (which

is partly true at Spelman) but there are also many more traditional CS programming

courses than the student probably anticipates.

For students of this sort, who were not enjoying aspects of CS, their conception

of CS seemed more potentially problematic. Their goals were not more specific than

other CS majors, and their conceptions were not objectively worse. The combination

of poor understanding of the future CS courses plus their lack of enjoyment of parts of

CS which will make up a considerable part of later courses is potentially problematic.

Students of this sort would probably benefit from a more detailed understanding of

CS (or more advisement), but were relatively rare among those I interviewed.

5.4 Summary

This chapter has focused on answering the following research question:

RQ2: Do potentially problematic CS conceptions affect student educational

decisions?

To answer that question, this chapter presents a grounded theory on how the students

I interviewed make educational decisions.

Students do not approach educational decisions in the way we might initially

expect. Even when students found their classes to cover content very different from

their expectations, that did not motivate them to switch classes or majors. On the

141

other hand, receiving poor grades in classes did seem to provoke switching — even

though (based on my interviews) students did not seem to be overly concerned with

maximizing grades. In our interviews, even students with detailed understandings

of the field of CS treated educational decisions like which area to specialize in very

casually. Students did not seem to get much advice from advisors or professors.

In short, students do not seem to be reasoning about the field of CS when making

educational decisions.

The theory of how students make educational decisions comes from two basic

ideas. One: students do not have a concrete idea of what career or skillset they

would like to pursue in CS; they are trying to figure out their goals within the CS

program. Two: the primary way students evaluate what their goals ought to be is

by examining their enjoyment of classes. Enjoyment of particular classes is used as a

test for how suitable that area of CS is for them.

This situation creates three main behaviors:

1. Abdicating Responsibility to the Curriculum. Students do not have a concrete

goal when they begin studying in a particular field, but rather than attempting

to gain a detailed view of the field for themselves, students rely on the curricu-

lum to teach them. They also assume that the curriculum is built in such a

way that anything which is possible within the requirements of the curriculum

is viable in terms of a long–term career path or that all choices are basically

teaching the same content in a different way. Either way, students educational

decisions “don’t matter” and students are safe to pursue any area that strikes

their interest within the curriculum.

Abdicating responsibility is not always a bad thing from an educational per-

spective. Students arrive in class with very few preconceptions about what they

expect to learn and (at least initially) assuming the professor is an expert with

their best interests in mind. It does put students at risk for ignoring valuable

142

content that (maybe due to financial or logistical constraints) is not part of the

curriculum at their school.

2. Making educational decisions based on enjoyment. They view their enjoyment of

their classes as a useful measure of whether they would enjoy pursing a particular

area more. Students are aware that other non–content factors (e.g. unhelpful

TAs) can affect their enjoyment, but they rely on it anyway. Enjoyment in this

case is not simply good grades but frustration or great academic difficultly did

make courses unenjoyable. If all their classes are equally enjoyable, students

select courses in an exploratory way. They choose courses of casual interest,

while keeping in mind course requirements.

If they notice a strong difference in how enjoyable some courses are (especially

if they have a bad experience in a particular course), it motivates them to make

educational decisions. Often, they will narrow their educational focus and more

clearly define their goals. This is when they often seek advice from parents,

advisors, and websites. It also motivates refining a conception of the field.

3. Making educational decisions based on long term goals. Once their educational

focus is sufficiently narrow, students develop a concrete goal. At this stage, they

do use their conception of the field to make educational decisions towards their

goal, and often describe research activities to refine their conception. They also

engage in behaviors that are very unlike students making educational decisions

based on enjoyment, like taking non–required courses they expect to dislike

because they will be useful.

This overall theory is consistent with descriptions of student behavior by Nespor

[60] and Eccles [30]. CS students behaved different than both Nespor’s physics and

management majors, but consistently across several different schools. Eccles model

of choice that students also heavily consider self–efficacy in their decision, which

143

suggests that within students descriptions of ‘enjoying’ particular classes they also

consider their likelihood of success.

5.4.1 Do potentially problematic CS conceptions affect student educa-
tional decisions?

For larger educational decisions such a selecting majors, courses, and specializations,

the answer seems to be “no”. Students are most interested in the emotional experience

of enjoyment in their courses and not the particular content covered. For that reason,

a detailed conception of the field of CS is not useful to them. The conceptions

identified in the previous chapter — usually accurate, but very general — are sufficient

for the sort of reasoning students do about educational decisions.

One area where student conceptions do seem to cause some problems is within the

content of specific courses. Students did mention that content that seemed useless in

earlier courses later turned out to be valuable. It is possible that students considering

content ‘useless’ had more to do with frustration and bad experiences, but either way

it is an concern. This educational problem was common, but by no means universal.

There were a few students whose view of CS had potential to cause problems.

Students who did not enjoy all aspects of their CS classes, but chose to persist oc-

casionally reasoned about CS in a way that was concerning. These students were

often interested in a part of CS which was near some other field, but envisioned more

content of interest to them in their upcoming courses than the curriculum supported.

For these students, a deeper understanding of the specifics of later courses or more

careful advisement might be beneficial.

In the previous chapter we discussed student conceptions about CS. In this chap-

ter, we examined how students used (and did not use) those conceptions to make

educational decisions. The next chapter will attempt to quantify the prevalence of

the three main conceptions in the student body.

144

CHAPTER VI

PREVALENCE OF CONCEPTIONS AMONG CS

UNDERGRADUATES

In Chapter 3, we identified three main conceptions about the field of CS: the theory–

view, the programming–view, and the broad–view. Although the different conceptions

did not seem to cause students to make problematic educational decisions, each group

of students does have different expectations about the focus of their CS classes. It is

reasonable to ask how common each of the conceptions are and if factors like gender

and CS classes might affect students’ conception of the field.

In this chapter, I present the results of Study 2. In Study 2, I tested a prelimi-

nary survey instrument based on the results of Study 1. The survey included both

open–ended sentence response questions and closed–form questions. The survey was

tested and revised using a thinkaloud protocol with five students (see the final Survey

instrument in the Appendix) and then was taken by 103 students in a CS course.

I evaluated the surveys to determine student conceptions based on both the open

and closed–form responses. I also developed an algorithm to attempt to determine

student conceptions based on just the closed response questions.

In this chapter, I present the prevalence of conceptions in the class I surveyed. I

also do some preliminary analysis of the relationship between student backgrounds

and their conceptions of CS. Finally, I talk about the accuracy of determining student

conceptions programmatically and some problems with the survey based on this first

large–scale test.

145

Table 3: Results of Study 2. N=99
Conception Broad: 27

Programming: 41
Theory: 8
Uncategorized: 23

Gender Female: 36
Male: 67

Ethnicity African–American: 6
Asian: 19
Hispanic: 3
White: 67
Other/Blank: 6

Major Computational Media: 20
CS: 70
CS Minor: 7
Other/Blank: 2

Threads (CS Majors only) Devices: 16
Media: 23
Modeling and Simulation: 4
Information Internetworks: 23
Intelligence: 24
People: 24
Systems and Architecture: 17
Theory: 6

Previous Classes High School CS: 37
Freshman Intro Course: 47
Discrete Math: 65
Introductory Computer Architecture: 26
Operating Systems: 2
Computer Graphics: 2
Algorithm Analysis: 2

146

6.1 Results from Study 2

Table 3 summarizes the results of Study 2. The study participants were students

in Georgia Tech’s Objects and Design course. This course follows after introductory

programming and can be taken either before or after Computer Architecture. This

course is taken traditionally in the spring of the sophomore year; although this course

was in the Fall, so students are likely to be either ahead or behind the overall schedule.

This course is required for all CS Majors (regardless of specialization) and all Com-

putational Media Majors. From a class of approximately 175 students, 103 elected

to participate. Four surveys were not included in the results due to very incomplete

responses.

From Table 3, it’s clear all three of the major conceptions were recognized in stu-

dents. The programming–view was the most common (41%) followed by the broad–

view (27%) followed by the theory–view (8%). There were also 23 students whose

conception could not be identified. All these results are based on my analysis of

the student responses based on both the open–ended questions and the numerical

questions.

The number of uncategorized conceptions is caused by several factors. Ten of the

twenty–three uncategorized were students who ranked both theory and programming

as highly CS–like but few other ‘broad’ activities were considered CS–like. Some of

these students are students with one of the three conceptions which could not be ac-

curately distinguished by the survey. For example, a student who ranks both theory–

view and programming–view questions highly might believe programming more cen-

tral, but because both are ranked quite high that might not be obvious from the

responses. Based on one student I interviewed for a thinkaloud protocol, I also sus-

pect there might be some students whose conception of CS is a mix of the theory–view

and the programming–view. It is also possible that there are conceptions of CS that

were not identified in Study 1. Although every attempt was made to sample a broad

147

Table 4: Chi–squared tests of the independence of various categories vs. conception.
Note that the p–values do not account for the fact that these tests are post–hoc.
N=92
Category tested vs. Conception Type χ2 p–value
Underrepresented Groups (Female or not White/Asian) 6.7709 0.0337
Gender 5.1275 0.077
Took Introductory Computer Architecture Course 3.9136 0.1413
In Media Thread 3.3869 0.1839
In Intelligence Thread 2.2564 0.3236
In People Thread 2.1994 0.333
Took CS Course in High School 1.8249 0.4015
Took Freshman Leap Course (general into to CS department) 1.5357 0.464
Took Discrete Math Course 0.6093 0.7374
In Information Internetworks Thread 0.3589 0.8357
CS majors vs. other majors 0.3323 0.8469

array of students, with an interview oriented technique only a small part of the overall

population can be interviewed. Therefore, it is possible that alternate views of CS

might exist in some students.

Another factor that has inflated the uncategorized percentage is students’ very

brief responses to the open ended questions. At most, students would respond in one

sentence and occasionally would leave the questions entirely blank. As a result, when

student responses were inconsistent, there was often little to go on. In the future, it

may be necessary either to increase the number of closed–ended questions (so a view

can be extracted even if a few responses are out of place) or provide compensation

to encourage students to spend more time (and probably accept lower response rates

due to the complication of compensation).

6.2 Influence on Conception Selection

Now that we have data about the conceptions of a large group of students, it is

reasonable to wonder if student conceptions are related to other factors. After Study

1, I did not have any specific statistical hypothesizes I wanted to test. The goal of

this section is to see if the data suggests an interesting avenues for future research.

148

Because the data collected here is categorical, the chi-squared test of independence

is a likely candidate. Basically, the chi-squared test estimates the probability that

two categorical variables are independent. For example, we might expect (as a null

hypothesis) that a student’s gender does not affect a student’s conception of CS. If

true, then it’s reasonable to expect that the percent of male students with a particular

conception would be the same as the population as whole. If the percent of male

students with each conception differs from the population as a whole, the chi–squared

test estimates the probability that this is due to random chance.

Looking at Table 4, you can see chi-squared test of independence applied to a

variety of the data collected in the demographic survey, sorted by p–value. In each

case, what is evaluated is if the category tested is independent of conception type.

Students with uncategorized conceptions were removed for the purposes of these tests.

The p–values given are for a single planned test (not a large number of tests looking

for interesting correlations). Because these tests are post–hoc and there are a large

number of them, it is not reasonable to make statistical claims based on these data.

As you can see from Table 4, there was not evidence of a relationship between

student conception and most factors. Threads and courses with less than 20 students

in the sample were not tested due to the unlikelihood of producing a meaningful chi-

squared. I provide a more detailed look at the factors that suggest some dependence

in the sections below.

6.2.1 Underrepresented Groups

Woman and non–Asian minorities have traditionally not been well represented in CS.

Based on my interviews, underrepresented groups often had different viewpoints and

(occasionally) negative experiences with parts of CS. Therefore it is reasonable to

wonder if underrepresented groups as a whole have different conceptions of CS, so I

included underrepresented groups as one of the backgrounds I tested. A student was

149

Table 5: Frequencies of conception divided by underrepresented group membership.
Number in parenthesis are what the frequencies that would be expected if membership
was independent of conceptions. Students were considered underrepresented if they
were female or if they were not white or Asian.

broad–view programming–view theory–view totals
Underrepresented groups 10 (10.7) 20 (17.4) 0 (3.2) 30
White/Asian Males 17 (16.3) 21 (24.8) 8 (4.6) 46
totals 27 41 8

Table 6: Frequencies of conception divided by gender and ethic group.
broad–view programming–view theory–view totals

Female 9 17 0 26
Male 18 24 8 60
African–American 0 4 0 4
Hispanic 2 0 0 0
Asian 7 7 0 14
White 17 28 8 53
Other 1 2 0 3

considered a member of an underrepresented group if they were female OR if their

ethnicity was not white or Asian. The analysis suggests that underrepresented group

membership may affect student conceptions (see Table 4). Table 5 shows student

conception frequency divided by membership in underrepresented groups. Members

of underrepresented groups were less likely than their counterparts to have a theory–

view and more likely to have a programming–view. Although underrepresented groups

being underrepresented in theory is consistent with my experience in interviews, I have

no explanation for why this is true.

The distribution for gender is similar to Table 5. Ethnicity was not incorporated by

itself (i.e. without gender) because there were too many empty cells which is a threat

to the validity of a chi–squared analysis. The complete breakdown of frequencies by

gender and ethic group can be seen in Table 6.

150

Table 7: Frequencies of conception divided by students who took an introductory
computer architecture course. Number in parenthesis are what the frequencies that
would be expected if membership was independent of conceptions.

broad–view programming–view theory–view totals
Took Computer Architecture 3 (6.4) 12 (9.7) 3 (1.9) 18
Others 24 (20.6) 29 (31.3) 5 (6.1) 58
totals 27 41 8

6.2.2 Computer Architecture

With a p–value of .14, the effect of computer architecture is not significant even

without accounting for post–hoc analysis (see Table 7). Still, it is worth noting

because it is the largest effect observed for a course or specialization. Note that for

courses, students were instructed to only select courses they had completed (rather

than courses they were currently enrolled in). In this case, students who had taken

the architecture course were less likely to adopt a broad view of CS. Although this

is not conclusive, this may be an indication that certain courses have an effect on

student conceptions.

6.3 Programmatically Determining Student Conceptions

The results in the previous sections are based on conception classifications that came

from both open–ended and closed–form response questions. Given that closed–form

questions make up a large part of the survey, I was interested in asking if it was

possible to identify student conceptions programmatically. A closed–form survey

that can be evaluated programmatically is much more useful for larger scale research

(and for instructors simply curious about their students’ conceptions).

For the programmatic evaluation, I focused on a few questions that (based on

my interviews) distinguished the three conception types. For each of these questions,

students were asked to “rank how much each of these people could be considered a

‘Computer Scientist’ and how much what they do could be considered ‘Computer

151

Science’ ” (see the Appendix for the full instrument). Table 8 shows the questions re-

lated to each conception. The following sections discuss how each view was evaluated

programmatically.

6.3.1 Evaluating Programming–View

Programming view was fairly straightforward. If a student ranked three of the four

programming questions as Computer Science (4 or 5 on the survey), they were clas-

sified by the algorithm to have a programming view. The activities were selected to

include activities of programming skill but little theoretical interest to help differenti-

ate from the theory view. Programming–view students were most mixed on whether

knowing obscure features of a programming language or writing reusable code were

Computer Science: many of them ranked one or the other highly but not both.

6.3.2 Evaluating Theory–View

The best differentiator for the theory view was ranking “A researcher who writes a

mathematical proof that one algorithm is more efficient than another” as strongly

CS. Students varied greatly in their answers to this question: 26 ranked it as one or

two (basically not CS) and 24 ranked it at five (a great example of CS). The other

two questions were more poorly posed (see Table 8 for the theory–view questions).

Students from other views often ranked them highly so there was less clear division.

If a student ranked all three of the theory questions as a 4 or 5, they were considered

to have the theory–view.

6.3.3 Evaluating Broad–View

Broad–view was the most difficult to classify. In interviews, students with a broad

view agreed that programming and theory questions were CS, but also had a broader

conception that incorporated things like managing software projects that theory–

view and programming–view students considered not CS. The difficult aspect was

152

Table 8: Instrument questions matched to conception
Programming–View Questions

1. A programmer who works for Microsoft on the next version of Microsoft Pow-
erpoint

2. A programmer who works for a bank and codes algorithms to predict insurance
rates

3. A programmer who knows a lot of obscure features of the C++ programming
language

4. A programmer who writes really easy to read reusable code

Broad–View questions

1. A graphic artist who makes 3D special effects for movies using existing 3D
graphics programs and occasionally programming small scripts

2. A researcher who studies how the elderly use social networking apps like Face-
book and Google+

3. A designer who makes a really easy to use user interface for a new app, but
doesn’t program it themselves

4. Someone who fixes broken computers (e.g. replaces hard drives, reinstalls op-
erating systems)

5. A manager of a large software project that doesn’t do coding themselves, but
understands a lot of the technical details

Theory Questions

1. A researcher who devises new algorithms for encrypting data

2. A researcher who writes programs to analyze network traffic and detect new
kinds of computer viruses

3. A researcher who writes a mathematical proof that one algorithm is more effi-
cient than another

153

Table 9: Classification problems with the programmatic classifier. N=99
Correctly Matched 68
Skipped due to blank response 7
Incorrectly Classified as ‘Uncategorized’ 10
Incorrectly Classified as ‘Broad–view’ 4
Incorrectly Classified as ‘Programming–view’ 10
Incorrectly Classified as ‘Theory–view’ 0

that broad view students in interviews often had idiosyncratic views about which

subfields were CS and which were not. A student might have a broad view and still

not consider user interface design part of CS, for example. To test for broad–view

students, I chose five activities that many broad view students would consider part

of CS but that many other students would not (see Table 8). If a student rated

at least three of these as fully CS (at 4 or 5), I considered them part of the broad

view. If a students selected at least 2 of these and also ranked the theory–view and

programming–view questions highly, the student was classified as broad–view.

6.3.4 Uncategorized

The classifier was designed to be fairly conservative in that if it did not have strong

evidence for a particular conception it would not classify a student. Students who

corresponded to both theory–view and programming–view but not broad were clas-

sified as Uncategorized, as were students who did not meet the qualifications for any

view. Some students often left some of the questions in Table 8 blank – the classifier

did not attempt to categorize these students.

6.3.5 Classification Accuracy

Of the 99 surveys collected, 68 had programmatic classifications that matched my

classification with open–ended responses (69%). The classifier did not classify stu-

dents with missing responses; if these are removed from the consideration then the

accuracy rises to 74%. You can see the complete breakdown of errors in Table 9.

154

It is possible to compute inter-rater reliability between myself and the program-

matic grader: Coken’s κ = 0.62. However, this statistic is not useful because inter-

rater reliability is a measure with two raters considered to be equally accurate. In

this case, the program cannot be more accurate than my analysis (which can take

into account anything the program might consider and more). Simply saying that

the program was 74% accurate is probably the most reasonable way to describe the

result.

Overall, based on these results, the current version of the survey and grader are

probably accurate enough for an instructor curious about student conceptions to

use. Given the opportunity to revise the survey instrument and fix some problematic

questions, I suspect it might be possible to greatly improve the accuracy. Building

a closed form survey of student conceptions of CS for research purposes seems to be

possible, although the preliminary instrument used in this study is not yet accurate

enough to be used in that way.

6.4 Summary

This chapter has focused on answering the following research question:

RQ3: What is the prevalence of different kinds of conceptions among the CS major

population?

Study 2 looked at a particular group of CS students, and it’s important to be

careful on generalizing the population of one particular CS class to CS students as a

whole. However several implications can be drawn:

• Students of all three major conceptions are represented, and definitely have

different opinions of CS as can be seen by their responses on the survey instru-

ment.

• For this particular class, the percentages of students with each conception type

155

were: Broad–view 27%, Programming–View 41%, Theory–View 8%, Uncatego-

rized 23%.

• Based on Chi-squared analysis of demographic and educational factors, students

from underrepresented groups in CS may be drawn to different conceptions than

white/Asian males.

This chapter also looked at the possibility of evaluating student conceptions of

CS programmatically. Programmatic evaluation based on the surveys collected in

in Study 2 achieved an accuracy of 74% (once surveys with missing responses were

removed). Although this accuracy is probably not sufficient to be used on its own, it

does suggest that with refinement a closed–form survey of conceptions of CS may be

possible.

Study 2 suggests that students with different conceptions of CS are present within

CS classes. Although some conceptions are more common than others, all three con-

ception types have a sizable representation. Although student backgrounds may have

an effect on conceptions, it clear that students from the same classes can nonetheless

come to very different views about the field of CS. The next chapter summarizes

the results presented thus far and discusses the educational implications of student

conceptions of CS.

156

CHAPTER VII

CONCLUSION

This chapter will begin with a summary of the initial research questions and their

answers. Then I will discuss how this work contributes to the CS Education com-

munity as whole, and discuss implications of my work to pedagogy and curriculum

design. Finally, this work concludes with a discussion of possible future directions for

this research.

7.1 Summary of Research Findings

RQ1: What types of CS field conceptions exist in CS undergraduate students?

H1. CS majors will exhibit a changing understanding of CS, initially potentially

problematic but becoming more productive.

H2. Multiple productive conceptions will be found in graduating undergraduate stu-

dents.

In Study 1 I identified three main conceptions in CS undergraduate students: a

theory oriented conception, a programming oriented conception, and a broad con-

ception. I also saw some evidence of programming–only conception that exists in

students towards the beginning of the careers. There may be several other views that

exist in students at the beginning of their CS curriculum but most of the students

I talked to evidenced some variation of the three main conceptions. Hypothesis 2

seems to have been confirmed.

Although Study 1 was not a longitudinal study, there is evidence for student

conception change. Students talked about their view of CS broadening, especially

157

to encompass the idea that CS was not just programming. In addition, the theory–

oriented conception requires some exposure to CS Theory that most students wouldn’t

be exposed to before college.

Although it may be reasonable to say student views of CS become more sophisti-

cated as students progressed, it is not clear that student views are “initially potentially

problematic”. Students with all types of conceptions (even at later stages of the CS

degree) have difficulty anticipating the content of their later courses. However, be-

cause students tend to abdicate responsibility to the curriculum, even a very vague

view of CS is sufficient for the sort of reasoning students do about their classes.

RQ2: Do potentially problematic CS conceptions affect student educational

decisions?

H3. Potentially problematic conceptions of CS will affect educational decisions.

Student conceptions of CS do not seem to have a strong effect on educational

decisions, at least for most decisions about courses and curriculum. Most students

do not have a long term goal (e.g. career goal) they are trying to achieve. Instead,

students explore the curriculum using enjoyment of their courses to help guide them.

If students enjoy most of their classes, then they continue to explore. If students

have a strong contrasting experience in one of their courses (either a very positive or

very negative experience) it triggers a reevaluation of their options and encourages

them to commit to educational decisions. Throughout this process, students rely

on curriculum to ensure the courses they take will not cause them problems after

graduation.

For students who are exploring, a detailed view of the field of CS is not an impor-

tant part of their reasoning process. The content of future courses isn’t as important

as how enjoyable these courses will be. For students who have decided on a particular

educational goal, detailed content knowledge about CS is important and students do

158

seem motivated to learn about the field of CS once they have an educational goal.

One aspect of student conceptions that is less clear from interviews is if student

conceptions made it more difficult to learn CS content. Some students did mention

thinking some CS content was useless in earlier courses but later discovering it was

valuable. It is unclear if this has a significant affect on learning, however.

RQ3: What is the prevalence of different kinds of conceptions among the CS major

population?

H4. Students conceptions will vary across the student population, with potentially

problematic conceptions persisting after introductory coursework.

From Survey 1, I constructed a preliminary survey instrument. In Study 2, I ana-

lyzed the responses of 99 students in a sophomore–level CS course. The programming–

view was the most common (41%) followed by the broad–view (27%) followed by the

theory–view (8%). Twenty–three of the responses could not be assigned a concep-

tion. All the main conceptions were represented in the class I surveyed. Students

conceptions did vary, but based on the results of Study 1, the survey did not attempt

to identify problematic conceptions (because conceptions do not appear to be a large

part of student educational decisions).

7.2 Contributions

I identify three main contributions from this work:

1. A theory of student undergraduate student conceptions. Prior to this work,

there was no concerted effort to understand how undergraduate CS majors

thought about the field. My theory provides a way for CS educators to think

about students’ expectations for their classes and field that has educational

implications.

159

2. A theory of student educational decisions. CS undergraduates make decisions

about their courses in unexpected ways. A theory about how students make

educational decisions can help administrators and curriculum designers make

CS curricula more in line with student behavior.

3. A preliminary survey instrument to elicit student conceptions of CS. Although

some questions on the survey were not perfect, as it stands the survey can

be used by educators curious about their students’ conceptions of CS. It also

represents an starting point for further research into student conceptions using

more quantitative methods.

7.3 Educational Implications

7.3.1 Dealing with Vague Student Expectations for Classes

Students exhibited an accurate but high level view of Computer Science. They gen-

erally took an exploratory attitude toward class, and did not know specifics about

the goals of the classes they selected. They usually did not have specific long–term

educational goals about CS.

From an instructor’s perspective, this confirms the initution that instructors must

motivate the content they present. It seems logical to think that any student who

registers for a particular elective must have some purpose in mind, but based on my

interviews students generally take classes without any concrete goals for the class.

Instead, students explore courses to see if the content is enjoyable. This provides

freedom for the instructor to focus on what is important. However, it does mean that

professor must persuade students the material is valuable (or maybe just interesting)

because they have no particular reason for learning the content.

The three perspectives provide evidence that student expectations for CS are

diverse. The good news is that the is little evidence for students with very problematic

conceptions of CS (e.g. CS as application use, CS as learning a particular language,

160

etc.). Students of all conceptions expect CS classes to have some non–programming

and some programming topics. However for courses that emphasize a particular

aspect of CS (e.g. theory courses, HCI courses), it may be a good idea to very clearly

set expectations upfront. For example, students with a programming–view might

like to know that a HCI course will focus entirely on eliciting user stories and doing

mockups; programming–view students might not expect that in a course.

Because students tend to abdicate responsibility to the curriculum, student cri-

tiques that course content is ‘useless’ may be more about frustration than the use-

fulness of the content. In my interviews, students generally entered courses with few

expectations about the content of their classes and trusted the material would be

valuable. Students would criticize the content of their courses when they had a bad

learning experience. Similarly, instructors occasionally complain that students have

negative preconceptions about their course content. Students probably do not have

good reasons to complain about the content of their course, but neither are instructors

right that students have negative preconceptions.

7.3.2 Student Enjoyment

Enjoyment turned out to be a large component of student educational decision mak-

ing. Students attributed enjoyment in a class to be a sign that they were well suited

for a particular discipline. This was true even though students could often identify

reasons for their enjoyment (or lack of enjoyment) that had more do to with peda-

gogical factors (e.g. frustration with TAs). Strong contrasts in enjoyment motivated

students to make educational decisions and narrow their long–term options.

While it is not surprising that enjoying classes motivated students, what is surpris-

ing is the extent to which students conflated enjoying courses and being well suited

for a particular discipline. From an educational perspective, this can be problematic

because there are many factors that influence student enjoyment: difficulty in getting

161

TAs, courses with too much required content due to curricular issues, etc. But a bad

experience in a particular course has a potential to be much farther reaching than

instructors might expect. A bad experience in a course may convince a student they

are poorly suited for a subdiscipline of Computer Science.

This suggests that unenjoyable classes, especially unenjoyable classes that are

prerequisite for many others, can make students consider themselves unsuited for

(and avoid) large areas of Computer Science. Courses of this sort often have many

stakeholders which can encourage too much material in the curriculum. Obviously

no teacher intends to make a course unenjoyable, but most curricula have a few

courses that are considered especially frustrating. These frustrating courses may

cause students to prematurely decide that they are not suited for certain areas of CS

that they might otherwise enjoy.

Another aspect of the way student enjoyment can trigger educational decisions is

the fact that students often make educational decisions quickly, and do not (at least

in my interviews) contact an instructor. When students are dissatisfied with their

courses they are also often concerned if they are well–suited for the field of CS. If our

goal is to improve student educational decisions, simply encouraging them to talk to

someone knowledgeable about the field at these stressful times could be beneficial.

Most of the time students are simply exploring and don’t require (or desire) explicit

advice. Obviously, there are logistical difficulties with having CS experts available

on short notice to give advice and social barriers than might make students reluctant

to get advise from an instructor. But based on my interviews, when students are

making educational decisions based on enjoyment of classes is when they could make

the most use of detailed knowledge of the CS field.

162

7.3.3 Design of Curriculum to Accommodate Lack of Student Goals

In our interviews, students definitely liked curricula like the Threads program which

gave them control over their classes. However, very few students used the freedom to

select specific classes for specific goals. Instead, students tended to make educational

decisions fairly arbitrarily, in line with their exploration of the major.

Based on my interviews, encouraging students to specialize early in their academic

careers seems to be counterproductive. Before I undertook this project, I imagined

that greater control of their curriculum might encourage students to develop a more

detailed conception of CS in order to make good choices. This does not seem to

have happened: students rarely talk about researching specializations or talking with

their peers about CS content. When students are forced to make educational decisions

prematurely, they choose without much consideration. If they have to specialize early,

it reduces their ability to explore.

Students rely on the curriculum and assume that any really essential content will

be taught to them regardless of their educational decisions. Students ignore the fact

that a decision to specialize early inevitably comes at the cost of some other material.

Early in the design of the survey instrument, I asked students to select elective courses

for a student who wanted to ‘keep their options open’ in CS. Students found this

question quite difficult, and it is difficult question for CS educators as well. My

research suggests that many students actually really do want to keep their options

open in CS, and I think the curriculum needs to provide guidance in that regard.

7.3.4 Summary

In this section, I have identified a few educational implications of my research:

• Instructors must motivate the content presented in their classes, especially for

courses that certain conceptions consider peripheral to CS.

• Students who complain about content being useless may have more issues with

163

the difficulty or teaching style of the course than with the content.

• Courses that are frustrating are problematic because they may inadvertently

convince students they are ill–suited for certain areas of CS.

• Students especially need guidance in CS when they’re experiencing contrasting

enjoyment, but current advisement structures don’t seem to encourage students

to talk with CS experts at these times.

• Curricula where students make educational decisions early in there careers may

be problematic because students seem to make these decisions in a arbitrary

way.

Student conceptions are diverse, but from an educational perspective I think the

main thing to remember is that students (regardless of conception) have a vague view

of the field and rely on instructors and curriculum. Eventually, some students do

develop goals in CS and, at that point, students can act with more independence.

However, for much of their undergraduate careers many students will not have goals

and the instruction and curriculum should reflect this. Based on my work, I have

submitted a letter to Georgia Tech about the potential limitations of their Threads

program, it can be seen in Appendix C.

7.4 Future Work

7.4.1 Future Work on Enjoyment and Educational Decisions

The strong relationship between enjoyment of classes and student educational deci-

sions was one of the surprise results of this research. There are a variety of open

questions about enjoyment that could be looked at going forward.

7.4.1.1 Causes of Enjoyment

Although we know that student enjoyment of classes has an impact of student edu-

cational decisions, exactly what causes students to enjoy their classes still could be

164

explored further. Self–effacacy and grades are obviously in a complex relationship

with enjoyment. In terms of their decisions, students generally described their deci-

sions in terms of enjoyment rather than terms of grades. That said, doing poorly on

tests and assignments often formed parts of students’ discussion of disliked classes.

Beyond that, models such as Eccles [30] posit self–efficacy as key component of stu-

dent decision making.

Although self–efficacy played some role in student decision making in my inter-

views, students did not simply enjoy easy courses which gave good grades. Students

may be seeking a difficulty level to provide them with a reasonable but not over-

whelming challenge [19]. Regardless, it seems that there is an interesting relationship

between self efficacy, student enjoyment of courses, and educational decisions.

Beyond the issue of self–efficacy, several other factors seem to be involved. Inter-

esting projects seemed to motivate some but also was a cause of stress and frustration

for others. Students definitely talked about specific topics being intrinsically inter-

esting, but it is not clear how that is different from less interesting content.

Based on my interviews, further pursing causes of enjoyment would have some

methodology challenges. Students are unsurprisingly uncomfortable discussing doubts

of their ability to succeed in their chosen major. One approach is to ground qualitative

interviews in some concrete instrument (e.g. surveys for psychology literature, or

other mixed techniques [35]).

7.4.1.2 Establishing a Quantitative Link Between Class Enjoyment and Educa-
tional Decisions

One of the concrete predictions that come out of my qualitative work is that enjoyment

should predict student educational decisions, at least for students without concrete

educational goals in CS. This is something that can be approached quantitatively

by comparing student enjoyment ranking of their classes to other likely factors like

165

grades, self–efficacy, etc. From a study design perspective, this is relatively straight-

forward. However it is important to test the predictions of theories developed with

qualitative approaches when possible. If the results confirm the theory, it increases

confidence on the theory at a large scale. If not, it suggests that more work needs to

be done to understand the process completely.

If a quantitative link between student enjoyment and conceptions can be estab-

lished, it should be possible to make curricular changes and see testable results. By

changing introductory courses that (perhaps due to excessive content or other issues)

are pushing students away from parts of CS, it may be possible to encourage students

to explore a greater breadth of CS.

7.4.2 Future Work on Student Conceptions of CS

At the beginning of this work, I hypothesized that potentially problematic student

conceptions might influence student educational decisions. Now that I know more

about the ways students make educational decisions, I do not believe problematic

conceptions of CS are a large educational problems. This removes some of the reasons

to study conceptions further. However, there are a few reasons to study student

conceptions beyond educational decisions.

7.4.2.1 Expansion of the Survey Instrument

In Study 2, I piloted a survey instrument. The result is not perfect, but overall the

instrument was successful in eliciting conceptions. There are a few questions that

could be answered by surveying a larger population of students:

1. Determining how the distribution CS conceptions change over time. It seems

likely the certain conceptions (e.g. theory–view) might become more prevalent

as students take more CS classes. Surveying students at the beginning and end

of their undergraduate experience could determine if the distribution of student

conceptions change over time.

166

2. Determining if individual courses change student conceptions of CS. By testing

student conceptions before and after I could confirm more accurately if certain

courses can change conceptions (as was suggested by the computer architecture

class in Study 2). Although none of the main conceptions are problematic, if

courses change conceptions in unanticipated ways (e.g. a computer architecture

course moves students away from the Broad–view) that may be concerning.

3. Determining if a relationship exists between student conceptions and grades. It

is a open question whether student conceptions might affect content learning.

Student conceptions could be elicited, and then content clearly related and un-

related to their conceptions could be provided. If students find learning content

related to their conceptions easier, that is evidence that student conceptions of

CS could be influencing the ease with which material is learned.

7.4.2.2 Determining Effect of Breadth–Oriented Curricula

Some CS educators recommend a breadth–first introductory approach to teaching CS

as a way of encouraging students view CS as more than programming [25]. Based on

my interviews, many students do have a very programming–oriented view of CS. It

would be very interesting to see if explicitly attempting to teach the breadth of the

field changes students’ conceptions. Explicit instruction might change the distribution

of conception in students or it might even cause qualitatively different conceptions to

develop.

It also might be interesting to examine breath–oriented curricula from the per-

spective of my theory of student conceptions of CS. Similar to alternative conceptions

research, it’s reasonable to imagine that students holding a particular conception of

CS might be resistant to education. By understanding what existing conceptions

students hold, it might be possible to make greater strides in changing students con-

ceptions about CS with instruction.

167

7.5 Summary

The goal of this research was to understand how undergraduate students think about

the field of CS. I hypothesized that students might have problematic views of CS that

would lead them to make bad educational decisions. After a grounded–theory based

study of 37 students and counselors, I came to a few conclusions:

• Most students fall into one of three main conceptions: the theory–view, the

programming–view, and the broad–view.

• All the three main views are reasonably accurate characterizations of CS at

high–level, although they lack detailed knowledge of specific subfields of CS.

• Students don’t have concrete educational goals in CS. Students make educa-

tional decisions in an exploratory manner, which does not require them to have

detailed knowledge about the field of CS.

• Contrasting enjoyment causes students to make educational decisions, and en-

courages them to narrow their focus and develop goals.

I also did a survey–based study to attempt to determine the prevalence of various

student conceptions in one class.

My research has several educational implications. First, instructors need to be

aware that students need help understanding the reason particular topics are im-

portant. Student views of CS are diverse and students often select courses without

understanding their content. Second, instructors need to monitor student enjoyment

of their classes. If students have bad experiences, they’re motivated to make edu-

cational decisions that prematurely ignore areas of CS because of a negative course

experience. Third, designers of curricula need to take into account that students

do not usually have concrete goals early in their undergraduate program. Forcing

students to make educational decisions early results in arbitrary decisions.

168

There are two main directions for future work based on this research. One direc-

tion is to further explore the relationship between student educational decisions and

enjoyment of classes. The relationship between self–efficacy (not really explored in

this study), grades, and student class enjoyment is likely to be complex. The second

direction is to continue to expand examination of student conceptions. The instru-

ment developed in Study 2 could be revised and used to answer several questions

that remain open about student conceptions. The affect of breadth–first CS curricula

on student conceptions could be studied. Overall, the area of CS conceptions and

educational decisions has many interesting future directions.

Over the course of this research, my view of students’ conception of CS has

changed. When I began, I was concerned that incorrect knowledge about future

classes might cause students to make poor educational decisions. Students concep-

tions of CS proved to be in some ways more sophisticated than I anticipated, and in

some ways less. Student educational decisions initially seemed completely arbitrary

but, thanks to the opportunity to interview many students, I now have a much better

understanding for the reasons they do what they do. Overall, student conceptions of

CS has proved to be a fruitful area of study thus far, with many interesting directions

to pursue in the future.

169

APPENDIX A

STUDY 1 MATERIALS

A.1 Initial Interview Guide

170

Students Script
Rapport-Building Questions - more ordinary starting places

1. Tell me about how you chose to major in CS.
2. What has it been like being in the CS program at your school?
3. Tell me about the courses you are taking this semester.
4. What sort of CS courses are you planning on taking in the coming semesters? Tell me

about what you expect to learn in these courses.
5. Tell me about your goals after graduation.
6. What do you still need to learn before you can <active goal>?
7. How has <previous course> helped you achieve these goals?
8. How will <future course> help you achieve these goals?

CS Conception Questions - questions designed to probe understanding of CS
9. Could you describe some of the most important things you've learned in CS?
10. Tell me about the field of Computer Science.
11. Tell me about how you tell if a particular activity is CS or not.
12. You talked about <course> earlier, why do your instructors consider that material

important?
13. You talked about <course> earlier, how does that relate to your overall definition of CS?
14. Do you think of CS as good training for <specific activity>? What parts of CS make it

good training for <activity>?
15. You said that ____ is important in Computer Science. What makes you say that?
16. You said that Computer Science is ___. Tell me how you came to that description.
17. Have you ever discussed what CS is with someone else ? Tell me about that.

Changing Conception Questions - questions designed to look at history of CS conception and
probe for issues arising from potentially problematic conceptions

18. Tell me about how your view of CS has developed,
19. Prior to ____, how did you think about CS?
20. Once your view changed from _____ to _____, did you approach things any differently

than you had in the past? Can you give me a specific example of something you used to
do that you would do differently now?

21. Can you tell me a story that exemplifies how you thought of CS at that time?
22. Who, if anyone, has influenced your view of Computer Science? Tell me how they

influenced you.
23. What advice would you give someone similar to you who was starting to major in CS?
24. What other viewpoints about CS have you encountered?
25. How do you think your perspective on CS will change, if at all, as you continue your

degree program?
Alignment Questions - questions designed to check if student feels their view of CS is aligned
with the curriculum

26. If you could change your school's CS degree program, what would you change if
anything?

27. Have you ever disagreed with a CS teacher about what was important in a particular
course?

28. Imagine I was a new student who wanted to ______ like you. I want you to give me the

171

real dirt. What should I do? What should I watch out for?
Closing Questions

29. Tell me about how your views on other things have changed since you started studying
Computer Science?

30. On the whole, how would you characterize your experiences as a CS major here at
<school>?

31. After having these experiences, what advice would you give to someone just starting in
CS at <school>?

Is there anything you'd like to ask me?

172

Teacher/Counselor Script

Rapport-Building Questions

1. What events led up to you becoming a student advisor?
2. What your sorts of concerns do students bring to you most often?
3. When a student comes to you with a concern, what do you think about before you advise

them?
4. Do you frequently advise students, who in your opinion, are making poor educational

decisions? What, in your opinion, causes students to make these kinds of poor
educational decisions?

Conception Questions
5. Tell me how you think about the field of Computer Science.
6. You talked about <course> earlier, how does that relate to your overall definition of CS?
7. You said that ____ is important in Computer Science. What makes you say that?
8. Compare your views with the views of students you talk to most frequently. Do you think

that students have a different view of CS than you do?
9. Is that the only view of CS you encounter in students?
10. Can you give me an example of an interaction with a student you had where this was

evident?
Changing Conception Questions

11. Tell me about how you think students viewpoints of CS change over time?
12. When students have <conception>, does that affect their educational decisions?
13. Can you think of a specific example of a student with <conception> and how that

affected their decisions?
14. When you advise students, do you find it difficult to change their views?
15. What do you think causes students to have <conception>?

Alignment Questions
16. Do you find students find the curriculum does not include things that they feel are

important?
17. What kinds of students have the most trouble fitting what they want to do into the way

the curriculum is set up?
Closing Questions

18. Tell me about how your views have changed since you began advising students?
19. What advice would you like to give to all CS students?
20. What advise would you give to someone who is beginning to advise students?

Is there anything you would like to ask me?

173

A.2 Initial Survey Document

174

This survey asks you to build a Concept Map. A concept map is a hierarchical diagram representing

a single overall concept, and all the important sub concepts that are part of it. A concept map has 4

key features, summarized in the example below. Before you begin, please look over the examples

below and make sure you understand what a concept map is intended to do.

Please look on the next page for a more complex example.

Key

Concept

General

Concept

General

Concept
General

Concept

Concept Concept Concept
Concept

Specific

Concept

Concept

Specific

Concept
Specific

Concept

link
link

link

link link
link

link
link

link
link

linkCross-link
Cross-link

example

example

example

Example “Generic” Map

Level 1

Level 2

Level 3

Level 4

Superman

Super

Hero

Normal

Human

Clark Kent

Adoptive

FamilyLois Lane

Super

Powers
Supervillans

Earth’s

Yellow

Sun
Kriptonite

Is a Disguises Himself As

Has Many Protects City From

Powers From Vulnerable To

In Love With Disguise Protects

Lex Luthor

Doomsday

In Love With

Feature 1:

Most General

Ideas on the top,

With Sub-ideas

below

Feature 2:

Each Link is

Labeled

Feature 3:

A Few Specific

Examples,

Wherever they Help

Feature 4:

Some Cross

Hierarchy Links

The Single Overall Concept

The General Sub-Concepts

Important Sub-Concept Details

As many levels

As you Need Childhood Friend Of

Example Map: Superman

Concept Maps

175

How to Build A Concept Map:

1. Decide what concepts you want to include in your map. Try to think about you concepts from a

variety of perspectives to generate a lot of different sub-concepts.

3. Arrange these concepts from general to specific

4. Start trying to build your map (I recommend pencil). Note that the first time you try, it’ll likely not

be right. A good concept map takes several revisions.

Below you can see an example concept map of the field of Chemical Engineering, as designed by a

Chemical Engineering student. Note that there may be many possible correct Concept Maps for a

single idea.

Questions to Ask Yourself To See if Your Map Makes Sense:

1. Does the map show hiearchy? Is each subordinate concept more specific and less general than

the concept above it?

2. Is the meaning relationship between two concepts indicated by a linking word?

4. Are there a small number of good examples?

3. Does the cross-hierarchy links show meaningful connections between 2 concepts in different

parts of the hierarchy?

Chemical

Engineering

Energy Bioengineering
Fluids and

Polymers

Methods

Sustainabl

e Energy

Improving

existing

plants

Biological

Networks

Using

organisms

to produce

chemicals

Biological

systems

Nanoscale/

Materials

engineering

Purely

theoretical

Modeling

polymers

Mathematica

l modeling

Transport

Behaviors

researches researches Studies

Researches
studies

Has subfield Has subfield includes includes

Has subfield

Has subfield
Has subfield

Has subfield

uses

wind

Solar power

batters

Ethanol

production

Coal, oil

Membrane

compositio

n

uses

uses

Uses

develops

176

Name ___

CS Field Survey v1

Part 1

Please draw a concept map representing the field of Computer Science. If possible, please include the

following items in your concept map: CS Theory, Compilers, Human-Computer Interaction (HCI), and

Logic Gates (e.g. AND OR NOT).

177

Part 2

Please answer these questions.

1. How would you define Computer Science?

2. What would be your ideal job, post-graduation?

3. What areas of CS do you consider best prepare you for the job you selected in question 2 and why?

4. What types of skills/information would you like to see covered in greater detail in your school's CS

curriculum?

178

APPENDIX B

STUDY 2 MATERIALS

B.1 Survey

179

What is your gender?

□ Male □ Female

Race/Ethnicity (check all that apply):

□ Asian □ Black or African American □ Hispanic or Latino
□ White □ Other

I am a (circle one):

CS Major (declared) CM Major

CS Major (not officially declared) CS Minor Other: _____________________

What would be your ideal job after graduation be (e.g. video game programmer at Microsoft)? (If you don't know,

just write "I don't know"):

[CS Majors only] Which of the following threads have you decided to pursue (circle 0 or 1 or 2, depending on what

you're sure of):

Devices Information Internetworks Intelligence

Media People Systems and Architecture (Platforms)

Theory Modeling and Simulation

Which of the following classes have you taken (check all that apply, excluding classes you are currently taking):

□ A Computer Science class in your high school

□ CS 1100 Freshman Leap

□ CS2050 or CS2051 Introduction to Discrete Math for CS (or similar)

□ CS2110 Computing Organization and Programming (or similar)

□ CS3210 Design of Operating Systems (or similar)

□ CS3451 Computer Graphics (or similar)

□ CS3510 Design and analysis of algorithms (or similar)

180

This questionnaire is about your view of the field of Computer Science. There are no right answers to these

questions. Don't worry if you don't have a definition of what "the field of Computer Science" is.

Please rank how much each of these people could be considered a "Computer Scientist" and how much what they

do could be considered "Computer Science" using the following scale:

1 - Not Computer Science At All

2 - Similar to/Useful to Computer Science, but isn't really Computer Science

3 - A Mix of Computer Science and Some Other Field

4 - Doing Computer Science, but maybe not the best example

5 - A great example of someone who does Computer Science (e.g. an example you might use yourself if you were

explaining Computer Science to a friend)

Please circle the number that corresponds to your selection.

A chip designer who works for Intel and designs new computer
processors

1 2 3 4 5

A graphic artist who makes 3D special effects for movies using existing
3D graphics programs and occasionally programming small scripts

1 2 3 4 5

A researcher who studies how the elderly use social networking apps
like Facebook and Google+

1 2 3 4 5

A programmer who works for Microsoft on the next version of
Microsoft Powerpoint

1 2 3 4 5

A designer who makes a really easy to use user interface for a new
app, but doesn't program it themselves

1 2 3 4 5

Someone who fixes broken computers (e.g. replaces hard drives,
reinstalls operating systems)

1 2 3 4 5

A programmer who works for a bank and codes algorithms to predict
insurance rates

1 2 3 4 5

A researcher who devises new algorithms for encrypting data

1 2 3 4 5

A researcher who writes programs to analyze network traffic and
detect new kinds of computer viruses

1 2 3 4 5

A programmer who knows a lot of obscure features of the C++
programming language

1 2 3 4 5

A researcher who writes a mathematical proof that one algorithm is
more efficient than another

1 2 3 4 5

A programmer who writes really easy to read reusable code

1 2 3 4 5

A manager of a large software project that doesn't do coding
themselves, but understands a lot of the technical details

1 2 3 4 5

A network administrator at a company that configures security
software to protect against hacking

1 2 3 4 5

181

Answer these questions in 1-3 short sentences.

How would you respond to this statement "Computer Science is the study of how to program computers."?

What is an example of a job a Computer Scientist might do that most people probably wouldn't expect?

Indicate how much you agree or disagree with the following statements (1 = completely disagree, 5 = completely

agree):

Designing and writing programs is the main activity of Computer
Science although other skills are important too

1 2 3 4 5

Computer Science is mostly about mathematics: the mathematics of
algorithms

1 2 3 4 5

Computer Science contains many subfields - some of which involve
programming and some of which don't involve programming

1 2 3 4 5

182

APPENDIX C

LETTER TO GEORGIA TECH

To the College of Computing of Georgia Tech:

I recently completed a study of student conceptions of Computer Science, which was about

student conceptions of the field of Computer Science. As part of this work, I interviewed

students at Georgia Tech and elsewhere about how they made educational decisions (e.g. how

they picked their Threads). This work turned out to have interesting implications for the design

of the Threads program.

Basically, what I discovered was that students often do not have a goal for their CS degree.

Instead, they engage in "exploratory decision making". They explore a set of classes, looking for

a particular class that they particularly enjoy (or don't enjoy). Students select classes within the

curriculum, while relying on the curriculum to prevent them from making bad educational

choices. This exploratory process can continue up to their senior year.

The main thing to realize is when students have to make a choice (e.g. what threads to select)

in this exploratory mode, the students choose in a fairly arbitrarily way. They don't use the

choice of threads as an opportunity do detailed research about CS or careers. Detailed

information about the careers related to each thread isn't really useful - students are interested

in discovering what they enjoy doing. Knowing for example, that a particular thread

combination would allow a focus on "distributed simulation" (and what that means) doesn't

really tell students if distributed simulation would be something they would enjoy working on.

Students also don't consider the possibility that particular selections might limit their

opportunities later on. The threads provide excellent guidance about what one should do if

one has a particular goal (e.g. what threads to take if you're interested in robotics). They

provide very little guidance about what to do if you have no particular interest in CS (which is a

place many students find themselves in).

I interpret my findings to mean he Threads program needs to better accommodate students

without concrete goals. I think that could be done a lot of different ways: having more courses

before students begin selecting thread-specific courses, a thread that focuses on breadth rather

than a particular specialization, etc. However it was accomplished, there should be a way for

students to take courses in a variety of areas of CS without concern that it will hurt their ability

to graduate. Moreover, because students rely on the curriculum for guidance, the faculty's

recommendation for what to do if you are undecided needs to be explicitly part of the

curriculum.

Another thing I discovered in my research is that because students use their enjoyment of

classes to decide which areas of CS they are well suited for, unenjoyable introductory classes

can have an unintended effect of pushing students away from parts of CS. Students use

unenjoyable classes as a sign to avoid parts of CS, even when they can point to educational

183

issues in the course that have nothing to do with the discipline itself (e.g. bad TAs). Although

no instructor intends to make a class unenjoyable, introductory classes have many forces

directing them and I think sometimes as long as students are having academic success,

enjoyment is sometimes considered less important.

For my Georgia Tech interviews in particular, the two introductory architecture courses in

particular made several students decide that they were poorly suited to architecture. This had

the effect of making students avoid all the threads that architecture was a prerequisite for. In

interview-based approaches like the one I used, a chance always exists that I happened to

survey a small subset of unhappy students. But, given my results, I think there is some

evidence that making the architecture courses more enjoyable might encourage students to

explore a greater breadth of CS fields. In general, my research suggests keeping a close eye on

enjoyment on introductory courses for any subdiscipline prevents students from prematurely

dismissing large areas of the field.

Although I've focused on the negatives in this letter, I want to conclude by saying that students

in general viewed their courses at Georgia Tech as both valuable and enjoyable. Based on my

research, I do have some concerns with how the Threads program is designed, but overall I

think the idea of responding to students' interests in the curriculum is a laudable one. I'd be

glad to meet with you or with anyone to explain my work more fully and explore the

implications.

Sincerely,

Mike Hewner

184

REFERENCES

[1] Aikenhead, G. S., “Science education: Border crossing into the subculture of
science,” Studies in Science Education, vol. 27, no. 1, p. 1, 1996.

[2] Aikenhead, G. S. and Ryan, A. G., “The development of a new instrument:
“views on science–technology–society” (vosts),” Science Education, vol. 76, no. 5,
pp. 477–491, 1992.

[3] Anderson, J. R., Reder, L. M., and Simon, H. A., “Situated learning and
education,” Educational Researcher, vol. 25, pp. 5 –11, May 1996.

[4] Astin, A. W., What Matters in College: Four Critical Years Revisited. Jossey-
Bass, Jan. 1997.

[5] Barton, A. C., Feminist science education. Teachers College Press, 1998.

[6] Biggers, M., Brauer, A., and Yilmaz, T., “Student perceptions of com-
puter science: a retention study comparing graduating seniors with cs leavers,”
in Proceedings of the 39th SIGCSE technical symposium on Computer science
education, (Portland, OR, USA), pp. 402–406, ACM, 2008.

[7] Bransford, J. D., Franks, J. J., Vye, N. J., and Sherwood, R. D.,
“New approaches to instruction: Because wisdom can’t be told,” in Similarity
and analogical reasoning, p. 470497, 1989.

[8] Bruckman, A., Biggers, M., Ericson, B., McKlin, T., Dimond, J.,
DiSalvo, B., Hewner, M., Ni, L., and Yardi, S., “”Georgia computes!”:
improving the computing education pipeline,” in Proceedings of the 40th ACM
technical symposium on Computer science education, (Chattanooga, TN, USA),
pp. 86–90, ACM, 2009.

[9] Carter, L., “Why students with an apparent aptitude for computer science
don’t choose to major in computer science,” in Proceedings of the 37th SIGCSE
technical symposium on Computer science education, (Houston, Texas, USA),
pp. 27–31, ACM, 2006.

[10] Cassel, L., Clements, A., Davies, G., Guzdial, M., McCauley, R.,
McGettrick, A., Sloan, R., Snyder, L., Tymann, P., and Weide, B.,
“Computer science curriculum 2008: An interim revision of CS 2001,” Associa-
tion for Computing Machinery and IEEE Computer Society, 2008.

[11] Charmaz, K., Constructing Grounded Theory: A Practical Guide through Qual-
itative Analysis. Sage Publications Ltd, 1 ed., Jan. 2006.

185

[12] Clancy, M., “Misconceptions and attitudes that interfere with learning to pro-
gram,” Computer science education research, p. 85100, 2004.

[13] Clarke, A., Situational Analysis: Grounded Theory After the Postmodern
Turn. Thousand Oaks, Calif: Sage Publications, 2005.

[14] Clough, E. E. and Wood-Robinson, C., “Childrens understanding of inher-
itance,” Journal of Biological Education, vol. 19, no. 4, p. 304310, 1985.

[15] Committee for the Workshops on Computational Thinking and Na-
tional Research Council, Report of a Workshop on the Scope and Nature
of Computational Thinking. National Academies Press, 2010.

[16] Committee on Developments in the Science of Learning, How Peo-
ple Learn: Brain, Mind, Experience, and School: Expanded Edition. National
Academies Press, 2 ed., Sept. 2000.

[17] Committee on Prospering in the Global Economy of the 21st Cen-
tury, Rising Above the Gathering Storm: Energizing and Employing America
for a Brighter Economic Future. Washington, D.C.: The National Academies
Press, 2007.

[18] Corbin, J. and Strauss, A. C., Basics of Qualitative Research: Second Edi-
tion: Techniques and Procedures for Developing Grounded Theory. Sage Publi-
cations, Inc, 3rd ed., Sept. 2008.

[19] Csikszentmihalyi, M., Flow : the psychology of optimal experience. Harper
Perennial, 1995.

[20] Deci, E. L. and Ryan, R. M., “The “what” and “why” of goal pursuits:
Human needs and the self-determination of behavior,” Psychological Inquiry,
vol. 11, no. 4, pp. 227–268, 2000.

[21] Deci, E. L. and Ryan, R. M., “Facilitating optimal motivation and psycho-
logical well–being across lifes domains,” Canadian Psychology, vol. 49, no. 1,
pp. 14–23, 2008.

[22] Denning, P. J., “Is computer science science?,” Commun. ACM, vol. 48, no. 4,
pp. 27–31, 2005.

[23] Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A.,
Turner, A. J., and Young, P. R., “Computing as a discipline,” Computer,
vol. 22, no. 2, pp. 63–70, 1989.

[24] Denning, P. J. and McGettrick, A., “Recentering computer science,” Com-
mun. ACM, vol. 48, no. 11, pp. 15–19, 2005.

186

[25] Dodds, Z., Libeskind-Hadas, R., Alvarado, C., and Kuenning, G.,
“Evaluating a breadth-first cs 1 for scientists,” in Proceedings of the 39th SIGCSE
technical symposium on Computer science education, (Portland, OR, USA),
pp. 266–270, ACM, 2008.

[26] Donald, J. G., Learning to Think: Disciplinary Perspectives. Jossey-Bass,
1 ed., Mar. 2002.

[27] Dweck, C., Self-theories: Their Role in Motivation, Personality, and Develop-
ment. Psychology Press, 1 ed., Jan. 2000.

[28] Eccles, J. S., “Understanding women’s educational and occupational choices,”
Psychology of Women Quarterly, vol. 18, pp. 585–609, 1994.

[29] Eccles, J. S. and Wigfield, A., “Motivational beliefs, values, and goals,”
Annual Review of Psychology, vol. 53, pp. 109–132, 2002.

[30] ECCLES, J. S. .-., “Who am i and what am i going to do with my life? per-
sonal and collective identities as motivators of action,” Educational Psychologist,
vol. 44, no. 2, p. 78, 2009.

[31] Edward, N. S., “Preaching to the converted,” International Journal of Elec-
trical Engineering Education, vol. 39, no. 3, pp. 230–237, 2002.

[32] Engle, C., “Software engineering is not computer science,” Software Engineer-
ing Education, p. 257262, 1989.

[33] Erickson, G. L., “Children’s conceptions of heat and temperature.,” Science
Education, vol. 63, pp. 221–30, Apr. 1979.

[34] Feil, A. and Mestre, J., “Change blindness as a means of studying expertise
in physics,” Journal of the Learning Sciences, vol. 19, no. 4, pp. 480–505, 2010.

[35] Fincher, S., Tenenberg, J., and Robins, A., “Research design: necessary
bricolage,” in Proceedings of the seventh international workshop on Computing
education research, ICER ’11, (New York, NY, USA), pp. 27–32, ACM, 2011.

[36] Foundation, W. E. and ACM, “New image for computing: Report on market
research.” http://www.acm.org/membership/NIC.pdf, 2009.

[37] Furst, M., Isbell, C., and Guzdial, M., “Threads: how to restructure
a computer science curriculum for a flat world,” in Proceedings of the 38th
SIGCSE technical symposium on Computer science education, (Covington, Ken-
tucky, USA), pp. 420–424, ACM, 2007.

[38] Gilbert, J. K., Osborne, R. J., and Fensham, P. J., “Children’s science
and its consequences for teaching,” Science Education, vol. 66, no. 4, pp. 623–633,
1982.

187

[39] Gilbert, J. K., Osborne, R. J., and Fensham, P. J., “Children’s science
and its consequences for teaching,” Science Education, vol. 66, no. 4, pp. 623–633,
1982.

[40] Greening, T., “Computer science: through the eyes of potential students,” in
Proceedings of the 3rd Australasian conference on Computer science education,
(The University of Queensland, Australia), pp. 145–154, ACM, 1998.

[41] Heersink, D. and Moskal, B. M., “Measuring high school students’ attitudes
toward computing,” in Proceedings of the 41st ACM technical symposium on
Computer science education, (Milwaukee, Wisconsin, USA), pp. 446–450, ACM,
2010.

[42] Herman, G. L., Loui, M. C., and Zilles, C., “Creating the digital logic con-
cept inventory,” in Proceedings of the 41st ACM technical symposium on Com-
puter science education, (Milwaukee, Wisconsin, USA), pp. 102–106, ACM, 2010.

[43] Hewner, M. and Guzdial, M., “Attitudes about computing in postsecondary
graduates,” in Proceeding of the fourth international workshop on Computing
education research, (Sydney, Australia), pp. 71–78, ACM, 2008.

[44] Hewner, M. and Guzdial, M., “How cs majors select a specialization,” in
Proceedings of the seventh international workshop on Computing education re-
search, ICER ’11, (New York, NY, USA), pp. 11–18, ACM, 2011.

[45] Hewner, M. and Knobelsdorf, M., “Understanding computing stereotypes
with Self-Categorization theory,” in Proceedings of Koli Calling International
Conference on Computer Science Education, (Koli National Park, Finland),
2008.

[46] James, R., “How school-leavers chose a preferred university course and possible
effects on the quality of the school-university transition,” Journal of Institutional
Research, vol. 9, no. 1, p. 7888, 2000.

[47] Kaczmarczyk, L. C., Petrick, E. R., East, J. P., and Herman, G. L.,
“Identifying student misconceptions of programming,” in Proceedings of the 41st
ACM technical symposium on Computer science education, (Milwaukee, Wiscon-
sin, USA), pp. 107–111, ACM, 2010.

[48] Kuhn, D., “Children and adults as intuitive scientists.,” Psychological review,
vol. 96, no. 4, p. 674, 1989.

[49] Kuhn, D., “Science as argument: Implications for teaching and learning scien-
tific thinking.,” Science Education, vol. 77, no. 3, p. 31937, 1993.

[50] Lave, J. and Wenger, E., Situated Learning: Legitimate Peripheral Partici-
pation. Learning in doing, Cambridge, UK: Cambridge University Press, 1991.

188

[51] Lederman, N. G., “Students’ and teacher’s conceptions of the nature of science:
A review of the research,” Journal of Research in Science Teaching, vol. 29, no. 4,
pp. 331–359, 1992.

[52] Lewis, T. L. and Smith, W. J., “The computer science debate: it’s a matter
of perspective,” SIGCSE Bull., vol. 37, no. 2, pp. 80–84, 2005.

[53] Lincoln, Y. S. and Guba, E. G., Naturalistic inquiry. SAGE, 1985.

[54] Linn, M. C. and Muilenburg, L., “Creating lifelong science learners: What
models form a firm foundation?,” Educational Researcher, vol. 25, pp. 18 –24,
June 1996.

[55] Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., and Rusk, N.,
“Programming by choice: urban youth learning programming with scratch,”
SIGCSE Bull., vol. 40, no. 1, pp. 367–371, 2008.

[56] Margolis, J., Stuck in the Shallow End: Education, Race, and Computing.
The MIT Press, Sept. 2008.

[57] Margolis, J. and Fisher, A., Unlocking the Clubhouse: Women in Comput-
ing. The MIT Press, Apr. 2003.

[58] Martin, C. D., “The case for integrating ethical and social impact into the
computer science curriculum,” in The supplemental proceedings of the conference
on Integrating technology into computer science education: working group reports
and supplemental proceedings, (Uppsala, Sweden), pp. 114–120, ACM, 1997.

[59] McGuffee, J. W., “Defining computer science,” SIGCSE Bull., vol. 32, no. 2,
pp. 74–76, 2000.

[60] Nespor, J., Knowledge in motion: Space, time, and curriculum in undergrad-
uate physics and management. Routledge, 1994.

[61] Novak, J. D. and Gowin, D. B., Learning How to Learn. Cambridge Univer-
sity Press, 1 ed., Sept. 1984.

[62] Osborne, R. J. and Gilbert, J. K., “A technique for exploring students’
views of the world,” Physics Education, vol. 15, no. 6, pp. 376–379, 1980.

[63] Papert, S., Mindstorms: children, computers & powerful ideas. Prentice Hall
/ Harvester Wheatsheaf, 1982.

[64] Rasmussen, B. and Hapnes, T., “Excluding women from the technologies of
the future? a case study of the culture of computer science,” Futures, vol. 23,
no. 10, pp. 1107–1119, 1991.

[65] Rosenbloom, P. S., “A new framework for computer science and engineering,”
Computer, vol. 37, no. 11, p. 2328, 2004.

189

[66] Rushkoff, D., Program or be Programmed. OR Books, 2010.

[67] Ryan, A. G. and Aikenhead, G. S., “Students preconceptions about the
epistemology of science,” Science Education, vol. 76, no. 6, pp. 559–580, 1992.

[68] Sandoval, W. A., “Understanding students’ practical epistemologies and their
influence on learning through inquiry,” Science Education, vol. 89, no. 4, pp. 634–
656, 2005.

[69] Schulte, C. and Knobelsdorf, M., “Attitudes towards computer science-
computing experiences as a starting point and barrier to computer science,” in
Proceedings of the third international workshop on Computing education research,
(Atlanta, Georgia, USA), pp. 27–38, ACM, 2007.

[70] Shackelford, R., McGettrick, A., Sloan, R., Topi, H., Davies, G.,
Kamali, R., Cross, J., Impagliazzo, J., LeBlanc, R., and Lunt, B.,
“Computing curricula 2005: The overview report,” SIGCSE Bull., vol. 38, no. 1,
pp. 456–457, 2006.

[71] Shamos, M. H., The myth of scientific literacy. Rutgers University Press, 1995.

[72] Sherman, R. R. and Webb, R. B., Qualitative research in education: Focus
and methods. Routledge, 1988.

[73] Smith, J. P., diSessa, A. A., and Roschelle, J., “Misconceptions recon-
ceived: A constructivist analysis of knowledge in transition,” Journal of the
Learning Sciences, vol. 3, no. 2, pp. 115 – 163, 1994.

[74] Songer, N. B. and Linn, M. C., “How do students’ views of science influence
knowledge integration?,” Journal of Research in Science Teaching, vol. 28, no. 9,
pp. 761–784, 1991.

[75] Stevens, R., OConnor, K., Garrison, L., Jocuns, A., and Amos, D. M.,
“Becoming an engineer: Toward a three dimensional view of engineering learn-
ing,” Journal of Engineering Education, vol. 97, no. 3, p. 355368, 2008.

[76] Sudol, L. A. and Jaspan, C., “Analyzing the strength of undergraduate mis-
conceptions about software engineering,” in Proceedings of the Sixth interna-
tional workshop on Computing education research, (Aarhus, Denmark), pp. 31–
40, ACM, 2010.

[77] Tew, A. E., Fowler, C., and Guzdial, M., “Tracking an innovation in
introductory CS education from a research university to a two-year college,”
SIGCSE Bull., vol. 37, no. 1, pp. 416–420, 2005.

[78] Tew, A. E. and Guzdial, M., “Developing a validated assessment of funda-
mental CS1 concepts,” in Proceedings of the 41st ACM technical symposium on
Computer science education, (Milwaukee, Wisconsin, USA), pp. 97–101, ACM,
2010.

190

[79] Wandersee, J. H., Mintzes, J. J., and Novak, J. D., “Research on al-
ternative conceptions in science,” Handbook of research on science teaching and
learning, p. 177210, 1994.

[80] Wing, J. M., “Computational thinking,” Communications of the ACM, vol. 49,
no. 3, pp. 33–35, 2006.

[81] Yardi, S. and Bruckman, A., “What is computing?: bridging the gap between
teenagers’ perceptions and graduate students’ experiences,” in Proceedings of the
third international workshop on Computing education research, (Atlanta, Geor-
gia, USA), pp. 39–50, ACM, 2007.

191

	Titlepage
	Signatures
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Conceptions of CS and Educational Decisions
	Why Study Conceptions of CS?
	Conceptions are Persistent
	Conceptions Have Educational Implications
	Conceptions Vary Between Fields
	Summary

	My Previous Work
	Studying CS Conceptions
	Thesis Statement
	Study 1: Design
	Study 1: Results
	Study 2: Survey of Students in a CS Class
	Study 2: Results

	Summary

	Chapter 2 — Previous Work
	Student Conceptions
	Epistemology of Science
	Alternative Conceptions
	Relationship Between Field Conceptions and Learning Content
	Summary

	Differing Expert Definitions of a Field
	Differing Expert Definitions of Science
	Differing Expert Definitions of Computer Science

	Studies of Enjoyment and Decision Making
	Enjoyment
	Eccles's Model of Achievement–Related Choices

	Studies of Student Field Conceptions
	Studies of College Student Field Conceptions Outside of CS
	Studies of Student Field Conceptions of CS
	Attitudes About Computing in Postsecondary Graduates
	Summary

	Conceptions of CS in High School Students
	Summary

	Chapter 3 — Study Design
	Study 1: Method
	Data Sources
	Interview Method
	Summary

	Study 1: Study Design and Analysis
	Grounded Theory in Study Design
	Analysis
	Differences From Proposal

	Study 2: Assessing Prevalence of CS Conceptions
	Design of the Survey Instrument
	Thinkaloud
	Participants
	Analysis
	Differences From Proposal

	Summary

	Chapter 4 — CS field conceptions in CS Undergraduate Students
	A Theory: Three Main Conceptions of the Field of CS
	Theory–View: CS as Mathematical Study of Algorithms
	Programming–View: CS as Programming–Centric but Including Supporting Subfields
	Broad View: CS as Having Many Different Subfields
	Commonalities Between The Three Main Viewpoints
	Discrepancies Between the Three Main Viewpoints
	Students Attempting to Combine the Views

	Potential Problems With the Three Main Conceptions
	Lack of Specifics About Future Courses
	Role of Theory
	Languages Rather than Concepts
	Misinterpreted Names
	Summary

	Change of Conception
	CS is Not Just Programming
	CS is Not Application Use
	CS Deeper Than Expected
	Learning About Subfields of CS
	Summary

	Effect of Curriculum on Student Conceptions
	Summary

	Chapter 5 — Student Educational Decisions
	A Theory of CS Student Educational Decisions
	No Concrete Educational Goals
	Abdicating Responsibility to the Curriculum
	Making Educational Decisions Based on Enjoyment
	Making Educational Decisions Based on Long–Term Goals
	Peers, Parents, Advisors, and Professors

	Implications of the Theory
	Relationship with Existing Theories
	Students Rarely Have Preconceptions But Can Lose Interest
	Detailed Conceptions of CS Don't Help Make Educational Decisions
	Summary

	Some Educational Problems
	Realizing It Was Useful Later
	On the Edge of Computer Science

	Summary
	Do potentially problematic CS conceptions affect student educational decisions?

	Chapter 6 — Prevalence of Conceptions Among CS Undergraduates
	Results from Study 2
	Influence on Conception Selection
	Underrepresented Groups
	Computer Architecture

	Programmatically Determining Student Conceptions
	Evaluating Programming–View
	Evaluating Theory–View
	Evaluating Broad–View
	Uncategorized
	Classification Accuracy

	Summary

	Chapter 7 — Conclusion
	Summary of Research Findings
	Contributions
	Educational Implications
	Dealing with Vague Student Expectations for Classes
	Student Enjoyment
	Design of Curriculum to Accommodate Lack of Student Goals
	Summary

	Future Work
	Future Work on Enjoyment and Educational Decisions
	Future Work on Student Conceptions of CS

	Summary

	Appendix A — Study 1 Materials
	Initial Interview Guide
	Initial Survey Document

	Appendix B — Study 2 Materials
	Survey

	Appendix C — Letter to Georgia Tech
	References

